;
‘:

i

'z '

Implementation Guide

Implementation Guide
Table Of Contents

Page 1G--1

TABLE OF CONTENTS
1. Program OQOperation and Usage ..cecessecea wesssnns cssemmsnsnanssans 1G-2
1.1. File Types used by the System . .ccivurircnnns arssaesvasmrnnns 1G-2
1.1.1 Table Of File TYyPES evscasasnvsnsansanannnsssansnnnnns 1G-2
1.1.2, Modula-2 Program Filescesuueee cesessssarmEanna 1G-4
1.1.3 Symbol FileS veeenensnnnsosncnsasansnsssnnsnansnasnens 1G-4
1.2. Program Description su.eecesesccascesssnanns crsErsssnrasnaes 1G-5
1.2.1. General Calling ConventionS cveeesccscsssaasaassnssnss 1G-5
1.2.2 MC the Modula-2 Compiler ...cecensnevansasnnnas veeaa 1G-8
1.2.3. ML the Modula-2 Linker ...icveennaas cenaas saremaann 1G-13
1.2.4. MP the Patcher soviicenneennivannnnnas cessssemssmanna IG-19
1.2.5 MX the Reference Lister ...evceceenes crsssesersEnEan 1G-20
1.2.6 MR the REL-MRL Converter «.occuueas et sesaanan e 1G-23
2. System Restrictions ..cccceccnanass mmmmasn evsmumans - wusennna 1G-25
3. The Standard Library ...cccccceceeens. sacesmennnna . cenmeaaas 1G-27
3.1. INtroduction v eiiieenrnanassncnnsaanssnnnns cessesrmsnEanan 1G-27
3.2 Terminal cuveeeeeeensascannansssssncassasanaunnsnsnannssnns 1G-29
3.2.1 General DesCription vovseeeesnnsnssasns cssemsamsnasns . 1G-29
3.2.2 Character Input sesevercencsansasanasnansanns ceseenss 1G-29
3.2.3. String INpUt v ieeceecerencussansnesnnasnssnnsnnnnas 1G-29
3.2.4 The Interface ..iveevsvroescccncenscansnsnnanasassnnss 1G-31
3.3. SeqlO (Fil€S) vvivevnnusnmunanssnnanansnanannsn cersarssnennana 1G-32
3.3.1. General DesCription w.ceesnessnsssrasavssssnsnnssnnns 1G-32
3.3.2. File NGmMeS ceeeuecenenessnnnsnasesssnnsnasnannnsnsnns IG-32
3.3.3. Error Handling «.ivseccnssnanncannnss resesremensanas IG-33
3.3.4. Reading From FileS v.vvivrvunensnsonns ceusnsrsennnnnn 1G-34
3.3.5. Writing to FileS «tiuneecennannsscannnsnunanananonnsns IG-34
3.3.6. Deleting FileS uueeiuesennnanussaunsssanssnanussnanns IG-35
3.3.7. Renaming FileS s.ueereennsnnnnornnnns eesszasassanns 1G-35
3.3.8. Changing the File Buffer Size hrersesaums esnanasae 1G-35
3.3.9. An Application of SeqlO vvveeee- ensesssEssassEnen IG-36
3.3.10. The Interface ...vevesasns Cesssseressumnasn Feenesnans IG-38

Implementation Guide

Table Of C
Page 1G--2

3.5.

3.6.

3.7.

3.8.

3.9.

ontents
TeXtS enenoannsansnnnasnasnnnnnnnnans crasamEsaas .
3.4.1. General Description cveverencsssnsnaasssssnsnnas .
3.4.2. Text OuUtpUt s eeencnrvenearasrennsanenans vnessas anaee
3.4.3. Text Input cuacuvenn. CaEsssesessssEsaEsEasTsaaanEEnns
3.4.4. Error Handling veceivnencncenncnnsnssansnsnessnnnnna
3.4.5. An Example Program seessssesseasansnsns ressesernas .
3.4.6. The Interface toveuivreraranaannnnrasssanansnnnnns .
RealTeXtS revurnencsnnaannsssnnnssaacnasannnanasnnnnnasnnnns
3.5.1. General Description ceeveececannnsnsssnns cresesnenaaa
3.5.2. WriteReal vvveieinenssrsnnsesssnnnsassnnsncsnsssannns
3.5.3. ReadReal ... iivinonsesncnnamscannnenossnsnrnnsnsnns
3.5.4 The Interface v.oviiivneercersnnasnsansnnassnnnnns .
INOUL L hiieise it it naeranonnasesenasnasssnnsnnasnsnnnnsrnnas
3.6.1. General Description cv.eicuerearsssnssnsanaessannaas e
3.6.2. [/O RedireCtion .uceueesserecersnnsnnnssssssnnnsssns
3.6.3. INPUL cuvievcenssunennennsnnsnssanssaannnssenannannnas
3.6.4. OULPUL st i e s ensnsnnnsananasunsnsnsannnnonnnns eenae
3.6.5. An Example Program hesssausessssEnesaus .
3.6.6 The Interface vcevveeeeneencnasannsnsssnssansnsss cesus
ReallnOut wuicerenecresnennnsnncnasnssrsennsnnsannnans avens
3.7.1. General Description cusssecsssssasessssasennanns neeaa
3.7.2. REAL INPpUt cuvesennannnnnsasssnssnsssnnnsnnnnns PR
3.7.3. REAL Output cvceinnennnn WrsesEsssEsEEssEsEEEan P
3.7.4. The Interface .sucvseesecaneancnesensnnrasennnna sesae
MathLib cuveesesvcanrnannneansaansnsnsasssnunnnnnans
3.8.1. General Description veesssesssscscennasasasansns ere
3.8.2. Error Handling .eeuvvuennnn. . rereaa
3.8.3. Trigonometric Function Procedures cesevesvucsans eans
3.8.4. Exponential and Power Function Procedures anenas
3.8.5. Conversion Function Procedures seeceveeesasnnans feene
3.8.6. The Interface cvvencvnennns amsssesssssnasennes ranemn
SYSTEM tniiiivrivncanannsnnssasssasassnsnssnnnsnanns evann
3.9.1. General Description »vecvcanne P ressrssEesEsEnan
3.9.2. Normal ContentS v.iveiererncersscncanasncnsnsnans cnraa
3.9.3. Special Additions: Storage Management ..i.cevcivasvasans
3.9.4. The Interface .v.icneieecnnncrsvenrsasnnannnnnes crean

Implementation Guide
Table Of Contents

Page 1G--3

4- The Utility Library ------- sSeEsEssssw IR N IR NN NN NN NN N NN NNENN NN IG_59
4.1, Introduction vovecse Goesasesssssseananns cressnasnevasnnennes 1G-59
4.2. ASCHl siicvcnsccnsnuannnnnnnanssassas v ersssssssessasesenas iIG-60
4.2.1. General Description veeevesersens ereessanus cesenas .. 1G-60
4.2.2. The Interfacevevsssscsnnennannes essspesnansssva 1G-60

4.3, ChainiNg veescocsascasasansns Cersessnssennna cacenas veenrsss 1G-61
4.3.1. General Description vevessssesaansssnsnns cnvsnssnsanse 1G-61
4,3.2. The InterfaCe v.vievesevenassnssassnsnn vevenrassscans 1G-61

4,4, CmALIN couerencncosnnsnensssnnsnsasnsnsnnns wraensysasscasnrana O2
4.4.1. General Description veeessssssarssas e 724
4.4,2, The Interface vovvencensansnnes seasssansa cesnsana eresss 63

4.5. CONtrolS cvevvonassnnsnnnsasennssnnnnnnnss Peacsssaaunan veee 1G-63
4.5.1. General Description vvecescsssnsnasnnssasnns cassasans IG-63
4,5.2. The Interface ..iuviveercnarnnnnnnnens ersseae erenruen 1G-64

4.6 StriNgS cucesscosssscsussssarsssnnssnannas ceswes eresesruns 1G-65
4.6.1. General Description ceasussneas. . e nsrnans IG-65
4.6.2. The Interfacec.ievercirenannannas cacens eseus v IG-67

4.7. LONGSEtS cuenwunnosccnanconnsasnansassacsansansasanasanannnss 1G-68
4.7.1. General Description weseessssssssassassssaanaannnnnss 1G-68
4.7.2. The Interface ..vveecnnsccnnsnssarsasnernns ressuas . 1G-69

4.8. CoNversionS vueesssssnssns ssssssassasun vressassuns ., .« 1G-70
4.8.1. General Description voveeesesanss cenesnun Peess e .« 1G-70
4-8-2- The lnterfaCe -------------------- »Ee s S FESFFOENREEERBSR IG"72

4.9, ConvertReal vuuvveessnnsnsnnsrsrsnnnsnns esreneEmEun vesseenuns 1G-73
4.9.1. General Description v eveveacanssnasaassesaaanns vnsnes IG-73
4.9.2. StrToReal v cveevsnnransansnnsns Ceessasseses vessesenes 1G-73
4.9.3. RealToStr evuveconsnsnanns hessesess esessasvavans e 1G-74
4.9.4. The Interface ..ciivucennnnnes Wresssnrevennnns venens 1G-75

4,10, FileNames ccuscoounsnssrssnansssnnnssansnssasannansnnaansnns 1G-76
4.10.1. General Description vveeeencananans neesarar recsssesss |G-T6
4,10,2. StrTOFCB ...evescesssssnsonas sersssssasas sessanas e 1G-T76
4,10.3. Accepted Names c..vevaa=- crssssmasesnssans vavenaess 1G-77
4,10.,4. Return Values .vesenness s msnmae casenrasss srssanas e 1G-T77
4,10.5. FCBTOStr svvevennscnannnns weessresanns reassnssnsnas 1G-78

4.10.6. The Interface Cresssersenan e mmsereEsrus veaeae 1G-78

Implementation Guide
Table Of Contents

Page 1G--4
4,11, FileSYS wivencunssnmnnonsnassnnsnsrnsnsnsnssnnnnnnnsnnsnsss 1G-79
4,11.1. General Description weeesenasssasssanncsssns . veen 1G-79
4,11.2. File NAmMES vveeuunnssacnnnsnsnnnsnunnsanssns reesaans .. 1G-80
4,11.3. Search Paths t.ieecesrerenccusaassnnnnnnnns cerensssane 1G-80
4.11.4. File Variableés tevererercnnnreracnansnasans crusna vene 1G-81
4,11.5. Reading From Files .uvieerissnrennnassrsnnnassnnnnss 1G-81
4,11.6. Writing to Filesiuieeinvennnnnmsansnns fearmsanns 1G-82
4.11.7. Renaming FileS c.ccviencsaccvssanasnsnnnans fessasans 1G-82
4,11.8. Deleting FilesS v uvcierneanenssnasanansannassnnsnanans 1G-83
4.11.9. A Sample File Copy Program ...« Ceetmssasessesaanes 1G-83
4,11.10, The Interface .v.iueseerevanerasanansonas CertEs s maae IG-85
4,12, Fil€S tiiucvanenaccenssascncesnsnnsassannnensansnnns veseswsses 1G-86
4,12.1. General Description wveceusesassnssesasasasnsssannnsns 1G-86
4.12,2. Error Handling seeveesansannnssassnnsnnesnnnnnnnsnnns 1G-86
4.12.3. File NAMES tvcecavenrssnnsssscaarnnssssnsnnnnassnnns 1G-87
4.12.4, File Variables .v.c.vinennnn G rsEsssssurann . .. 1G-87
4.12.5. File Position Variables ...vicvevencecnnnsnes cesrssueus 1G-87
4.12.6. Reading From FileS .eivieiscinsrsacnnncuasns seesaenuns IG-88
4.12.7. Writing to Files tuuriinrnenvnsnanraranennnnss sananns 1G-89
4.12.8. Positioning Files vuuiesianencsnsnnnnsunsncaveoasannans 1G-89
4.12.9. Renaming FileS u.civuicnnnvanssnssenscennnnnsnneannnne 1G-90
4.12.10. Deleting Files vueiinernnnenannsnannnennnns rassrenns 1G-91
4,12.11. The Interface cvveeeeiinnnnenrsacnnneasannsassnansns 1G-91
413, MOVES .uvieurenasansneasnarsorsnanansnsnansaanannnnnanns .. 1G-93
4.13.1. General Description wiveeencressssscssssnsnesasannnnns 1G-93
4.13.2. How to Use MovelLeft and MoveRight ... eeeveannnnnns 1G-94
4,13.3. The Interface vivvrvereninnsnsanncnsnennns e sarsreas 1G-95
4,14, OPSYS wuvcursnscscennsnsnnrsassnsanasassanssnsnnannnannnn .« 1G-96
4.14.1. General Description teceseracsssacsasassasnssnsnanns . 1G-96

4.14.2. The Interface suv.veeecacnanncsensnansenses certsaneans 1G-97

Iimplementation Guide
Program Operation and Usage
Page 1G-1

IMPLEMENTATION GUIDE

Catchwords of this part are:

- Program Description and Operation
- How to Compile and Link

- System Restrictions

- Standard Library Description

- Utility Library Description

The Introduction to Modula-2 explained the Modula-2 language by comparing it to
its predecessor, Pascal. Here, you will learn to operate the programs that pertain to
the Modula-2 System for Z80 CP/M. Also covered in this section are the descrlptlons
of the library modules that are delivered with this implementation.

There are several Modula-2 conventions that are at best strange for CP/M users. For
instance, a ReadString operation terminates not only upon receipt of a CR character
denoting a line's end, but also upon receipt of a space. So, please read the
specifications of each and every library module carefully before using it.

Implementation Guide
Program Operation and Usage
Page 1G-2

Chapter 1. Program Operation and Usage

In this section, the programs of the Modula-2 System and their particular usage will
be explained.

Section 1. File Types used by the System

The files used by the System can be categorized after their type. This is done in the
following table.

1. Table Of File Types

The Modula-2 System uses the following file types:

Type Usage

MOD Files of type MOD are used to store the source text of
Program Modules or IMPLEMENTATION MODULEs. They are
compiler input files.

DEF DEF-typed files serve as DEFINITION MODULE source holders.
Like .MOD files, they are compiler input files.

MSY From each successful compilation of a DEFINITION MODULE, a
so called symbol file results. These are of type MSY. These
files are generated by the compiler and are also compiler input
files.

Implementation Guide
Program Operation and Usage
Page 1G-3

Type Usage

MRL Upon successful compilation of a MOD file, the compiler
generates an object file or relocatible file. These files are
of type MRL. They are also linker input files. Why MRL, not
REL: Although there exist already a whole bunch of more or
less compatible derivations from the standard Microsoft REL-
Format, we decided to create a new, not directly compatible
variant. This was necessary to have longer names than 8
characters, among other reasons. For a more detailed
discussion, please have a look at the appendix The MRL
Format.

MAC If you selected the assembler output commandline switch of
the compiler, a Microsoft M80 compatible MAC file is created
instead of the usual MRL file.

NOTE - You cannot simply create all MAC files, assemble
them and link them using L80, because the Modula-
2 linker does some work that cannot be done by
L.80. Please read the assembly language interface
section in the Advanced Programming Guide for
more information concerning this topic.

MAP Upon request, the linker creates a file of the addresses of all
symbols that are known to him. "Known" are only symbols that
are imported by some moduie. These files are of type MAP;
they are not compatible with SYM files.

LST The compiler lister generates a file of type LST upon unsuc-
cessful compilations (i.e. if the compiler found errors in your
source program). The compiler's error messages are in-
terspersed with your source code.

REF The reference lister generates files of type REF.

COM The linker generates standard executable command files of
type COM.

Implementation Guide
Program Operation and Usage

Page 1G-4
Type Usage
R2M Files of this type are supposed to contain name translation
tables for assembly language modules. For further information
about assembly language integration, consult the Advanced
Programming Guide.
$5% This file type is used by the compiler for its intermediate files.

Should there rest any on your disk after an interrupted
compilation, you can delete all of them without danger.

2. Modula-2 Program Files

Program files (they are also referenced to as compiler input files) can be created
and updated with any ASCI} text editor (WordStar, Magic Wand, Mince, PolyVue,...).
The compiler isn't sensible regarding the "unused" hi bit of characters; you can even
edit your programs in WordStar's famous "document mode" without you having to use
PIP to get a clean compilation.

The compiler doesn't accept control characters in string constants. Control
characters are ASCI!I NUL (0C, OH) .. ASCIV US (37C, 1FH) and ASCII DEL (177C,
7FH)) .

3. Symbol Files

From a DEFINITION MODULE compilation, a so called symbol file results. It
contains a compressed representation of the information contained in the definition
module. It also contains extracts of all modules imported by that definition module.

Iimplementation Guide
Program Operation and Usage
Page 1G-5

Section 2. Program Description

All programs of the Modula-2 System for Z80 CP/M will subsequently be
described. All options and switches of each program are presented.
Therefore, you can use this chapter as a reference manual for program
operation. First, let us introduce the general calling conventions for all
programs of the System.

i. General Calling Conventions

All programs of the System use the same command line interpreter and therefore, all
of them are similar to use, i.e. to invoke. How you can do this is explained in this
section.

There are two forms of calls:

(1) AsProgramName CommandLine <CR>

(2) AsProgramName <CR>
*CommandLine <CR»>

'ProgramName’' denotes the actual name of the program you want to invoke. It is
given later in the detailed program descriptions. The form of the 'CommandLine' is
for both call forms as follows:

ModuleFileName {"/" Switch} .
ModutleName ["." ModuleType] . 1
character {character | digit} .

CommandLine
ModuleFileName
ModuleName

ModuleType = "DEF" | "MOD" .

Switch = character [":" (HexNumber | DecNumber | String)] .
String = character {character} .

DecNumber = digit {digit} .

HexNumber = HexDigit [HexDigit [HexDigit [HexDigit]]] .
HexDigit = digit | "A" | . | "F" .

digit ="o" | .] o,

! The ModuleType addition is not allowed in the linker and the converter.

implementation Guide
General Calling Conventions
Page 1G-6

character =mar | LLzt et | L | 2"

When you call a program using form (1), it signs on this way:
MODUILA-2 <Program Function> for Z80 CP/M Version dd-mm-yyyy
The program immediately starts his activity.

If you call one of the programs by using the second invocation variant, it signs on as
follows after you entered the first line:

MODULA-2 <Program Function> for Z80 CP/M Version dd-mm-yyyy
¥*

The star prompt is displayed and the cursor is placed right behind it. Now, you can
enter the command line, which is terminated by another hit of the RETURN, ENTER,
or NEW LINE key on your terminal.

NOTE - None of the programs is case sensitive in its command line.
NOTE - The command line interpreter is tolerant against spaces that are

entered before the program name, i.e. typing

A> mc myprog/v <CR»>

actually compiles what you intended to compile, 'myprog' in verbose
mode, and not 'mc’.

You may make a mistake when entering a command line. Errors of this kind are
flagged by the following messages:

---- Filename Expected

~--- lilegal Command Line

---- {ilegal Switch /x ("'x' is what you entered)
-—-~ f{llegal Use of x-Switch (")

Implementation Guide
General Calling Conventions
Page 1G-7

In most cases, they lead to another star-prompt. Just start over and enter the whole
line again. If you have specified an unknown file name, all the programs abort with
the following message

-~-- FILENAME.TYP Not Found
Another error message can occur when your disk is nearly full on program start and
during the execution, the disk really fills up. Then, either

---- DISK FULL (or Directory Full)
or

---- Cannot Write to FILENAME.TYP
resp.

---- Cannot Create FILENAME.TYP

appear as error messages before the programs abort.

After this general remarks about program invocation and error messages, you will find
detailed descriptions of each program including an ‘action summary' describing what's
going on during you're waiting for the respective program to finish, together with a
detailed description of the switches of each one, as well as some remarks about
program input-, output- and intermediate files.

Implementation Guide
Compiler
Page 1G-8

2. MC the Modula-2 Compiler

a) General Description

The compiler's duty is to analyze your program source text, to check it for errors,
and finally to create a machine language program that is equivalent to your source
program. This whole process is called a compilation of your program.

The Modula-2 Compiler for Z80 CP/M accomplishes this task in four steps or four
passes.

Pass 1 checks the program syntax. It detects all syntax errors except for misspelled
identifiers (remember, Modula-2 distinguishes upper- and lowercase in identifiers). If
it finds errors, then, depending on the mode you selected for the compilation, it
either writes an 'E' for the first of every ten errors, or it outputs for each error a
message of the form

Error eee on line [lll, pos. ppp

'eee' is a 1 to 3 digit error number. 'llilI' indicates the line on which the error
occurred, first line of your program being tine one, 'ppp' the position, the first
position on each line being position one. For each error, a beep sounds. If you
selected the verbose output and a serious error is detected, then the compiler stops
after Pass 1; in non verbose mode, the lister is called. You can look up the error
messages at the very end of manual, just before the index.

Depending on the seriousness of your error(s), Pass 1 either calls the lister or it
'remedies' your error(s) so that Pass 2 can work properly on your program. Among
others, missing semicolons and Pascal-style BEGINs are 'corrected'. The correct(ed)
version goes to

Pass 2, which checks all declarations for correctness and suitability. This is the
place where some of the misspelled identifiers are likely to be detected. The error
handling is the same as in Pass 1, but Pass 2 doesn't make any corrections and
assumptions whatsoever on its own. If no error is detected and depending on what
you compile, it calls either the SymPass (for definition modules) or

Pass 3 which does all the type checking and will flag all of the unknown identifiers
resulting from misspellings. The error handling is the same as in the previous passes.

implementation Guide
Compiler
Page 1G-9

Additionally, Pass 3 tests if any errors occured in Pass 1 (the corrected ones). For
safety's sake, it aborts compilation if Passes 2 and 3 found no error, while Pass 1 had
corrected some minor ones. If no errors occur,

Pass 4 gets in command of the system. Its task is to generate code. Normally, no
error occurs in it; should there be an error, it will be a fatal one which ends the
compilation with a message looking like:

Expected Token: mm Received Token: nn *¥%**
**%* Compiler Error 5xx on Line Il

Such errors always flag an internal compiler error. If you get one, please send us a
preferably small listing that provokes it. We'll try to fix it as soon as possible.

If you request a listing by a command line option, Pass 4 passes control to the lister
after a successful compilation. The output of Pass 4 is called an object file or a
relocatible file, if the assembly language output has been selected, it is called an
assembler file.

SymPass is called by Pass 2, if you compile a definition moduie. It generates a
symbol file.

The last part of the compifer is the Lister. Its task is to merge the compiler's error
messages with your source program into a listing file that has numbered lines and
error messages in it. The error messages look as foliows:

KKK -~ nnn

The 'star bar' is between line numbers; 'nnn' represents the error number that
applies to a symbol beginning just above the up arrow ('"'). Should there be any
errors that apply to the beginning or end of the file, they are indicated at the
beginning or end of the file as follows:

/ nnn,nnn,...

As in the above form, 'nnn' are (different) error numbers. The error message
explanations are located at the very end of the manual, just before the index.

Implementation Guide
Compiler
Page 1G-10

b) Technical Description

ProgramName MC

Input Files of type DEF or MOD. Pass 2 needs files of type
MSY of all imported modutes. Default file type is MOD,
i.e. if you simply enter a file name without type, the
type is assumed to be MOD.

Intermediate Several files of type $$$ are used. They are all deleted
after a successful compilation. After an interrupted one,
you can delete all of these files without danger.

Output Depending on the type of the compiled module and on the
commandline switches, either a MSY, a MRL or a MAC
file will be created. If compilation errors occur and you
didn't select verbose mode (see later), a LST file is
generated by the lister.

Switches /A, /L, /V, /X,

The A switch selects assembly language instead of the default MRL format
file to be output. The output file bears the MAC type in this case. Please
read the Advanced Programming Guide if you want to use this output
not just to see how well the compiler optimizes. (Default: MRL output)

The L switch is used to force the compiler to generate a listing also on
clean compilations. Please consider the use of MX the reference lister (see
fater). (Default: No listing)

To make the compiler verbose, set the V switch. Several informations
about usage of tables internal to the compiler is written to the screen in
this case. (Default: non verbose)

The X switch directs the compiler to delete the file '$3$3$.SUB' and thereby
interrupts the execution of a submit file if an error occurs. (Default:
submit continues)

implementation Guide
Compiler
Page 1G-11

NOTE - The file name of a given module has to coincide with the first eight
characters of the module name (less if the module's name is shorter). To
'coincide' means that all characters are uppercased. No lower case
characters are allowed in file names to fulfill the CP/M conventions.

NOTE - Ali compiler switches may also be embedded in the source code in the
usual form (i.e. (*$A+ *), (*$L- *)). This comment may stay anywhere in
the source code. If you specify one switch multiple times, only the last
setting will be acted upon.

c) Examples

NOTE - In accordance to the typographic conventions, all user input is
underlined in the examples.

- The definition module 1nOut shall be compiled.

A>MC INOUT.DEF <CR»>

MODULA-2 Compiler for Z80 CP/M Version 17-03-1985
Compilation of INOUT.DEF

P1.

P2.

SymPass.

As>

resulting from this compilation is the file 'INOUT.MSY".

- Next, the implementation module InOut is to be compiled; the
generation of a listing is forced.

A>MC INOUT/L <CR»>
MODULA-2 Compiter for Z80 CP/M Version 17-03-1985
Compilation of INOUT.MOD
Plececvvarannans
imported Modules:
INQUT JSY - InQut

TERMINAL.MSY - Terminal
SEQIO JSY - SeqlO
QOONVERS 1 .MBSY - Conversions

impiementation Guide
Compiler
Page 1G-12

STRINGS .MSY - Strings
MOVES MSY - Moves

Lister
No Error detected
A>

This compilation generated 'INOUT.MRL' and 'INOUT.LST'.

- Working in verbose mode, the compiler shall compile the program
module MAIN.

A>MC MAIN/V <CR>
MODULA-2 Compiler for Z80 CP/M Version 17-03-1985
Compilation of MAIN.MOD
P1......
307 bytes and 27 names in name table
Imported Modules:
INOUT .MSY - InOut

Code Size: 1307 bytes
Data Size: 54 bytes
A>

The resulting file is '"MAIN.MRL".

Implementation Guide
Linker
Page 1G-13

3. ML the Modula-2 Linker

a) General Description

The linker's duty is to join different relocatible files to form an executable program.
The Modula-2 Linker is implemented as a two pass linker (no, we do not have an
acute multipassitist).

Pass 1 searches all parts of the program (including all library modules that are used
by it) and collects the information that

Pass 2 needs to generate an executable program.

This split into two passes was done for the following reasons:

- You can link programs as big as 64 kBytes.

- The symbol table space got bigger.

- The linker automatically finds all modules necessary to construct the
program in its first pass. This makes it amazingly simple to operate.

- All modules that are used by your program-to-be-linked have to be
initialized before the program body (the main program) executes. If
one of your modules relies on a second one, it is intuitively clear
that the second one has to be initialized before the first one. This is
also assured by the linker.

The runtime library MODLIB.MRL is necessary to get the linker doing its task. The
compiled code heavily relies on little routines that are collected in MODLIB.

Normally, the linker works in-memory, i.e. it links the program and then flushes its
buffer to disk creating your executable program file this way.

Implementation Guide
Linker
Page 1G-14

Now, if your program gets really big, the linker starts to flush its buffer as soon as
no more space for a module is available. This continues until either your program is
linked completely, or 64 kBytes are reached. In the second case, we recommend for
instance a VAX computer‘.

Another possibility to reach the linker's limits are to create single modules of more
than 25000 bytes of code. This would equal to about 4000 source program lines,
according to our experiences. In this case, the linker outputs a very concise error
message:

---- Module Too Big

and aborts its operation. Don't you think you can split up such an enormous module?

b) Technical Description

ProgramName ML

Input Fites of type MRL.
Output A COM file, upon request (see /M) also a MAP file.
Switches /Cixxxx, /Dixxxx, /Hixxxx, /Jixxxx, /L, /M, /N,

/O:FileName, /S:FileName, /Tixxxx, /V, /X.

The C switch serves to set the code start address and is used in ROM
applications only. (Default: /C:100)

The D switch is the data counterpart of /C. As the above one, it is used
only in ROM applications. {Default: First data byte after last code byte)

If you want your product to be mentioned here, please contact us. Make sure that
it has more memory capacity than a Z80 and that a Modula-2 compiler (preferably
made by ourselves) is available for it. Thank You.

implementation Guide
Linker
Page 1G-15

The H switch allows to set the heap start to a specific address. The heap
is the area used to dynamically allocate memory by means of the NEW and
DISPOSE procedures. You need to set it in either ROM applications or in
program systems with shared data. (See Advanced Programming Guide
for more information regarding this topic. (Default: First heap byte after
last data byte)

The J switch serves to reserve space in front of the actual program start.
A jump around an area of xxxxH-3 bytes is placed in the first three code
locations. You can insert a copyright message, for instance. (Default: no
jump generated)

The L switch directs the linker to show the order in which the moduie
initializations (the bodies of implementation modules) are executed, along
with a list of the requests of each module. For each module, the linker
shows if it has an initialization or not by a (+) or (-) following the
module's name plus a list of the file names of all modules requested by the
current one. (Default: no list of initalizations)

The M switch directs the linker to create a MAP file containing all visible
symbols of a program. MAP files aren't SYM file compatible, i.e. you
cannot read them into SID or ZSID. This is because the Modula-2 System
allows for much longer names than the normal REL format. (Default: no
symbo! map)

Normally, every program initializes its heap on startup. To be able to
retain the heap across several chained program parts (as for instance in
the compiler), you can direct the linker to omit the code that does this
initialization. This is done by specifying the N switch. Programs linked
with the N switch are still stored as COM files, but when started from
CP/M, they print the error message

~---- Modula~2 Runtime Error: Cannot Execute Chain File
Refer to the Advanced Programming Guide for more information about

this topic. (Default: Heap gets initialized on program startup)

The O switch allows to specify an arbitrary output file name instead of
the main program file name. The COM as well as the MAP file will bear
the specified name. (Default: output name is main program name)

The S switch allows the user to specify a shared data module. A shared
data module may not contain any code. The end address of the shared

Implementation Guide
Linker
Page 1G-16

data module is defined to be the address of the first heap byte - 1. So, it
is located just below the heap. This implies that /S demands that /H is
used, too. The Advanced Programming Guide contains more information
about sharing data between several programs. (Default: no shared data
module)

The T switch is used to set the Top Of Stack. This switch is used for ROM
applications only. (Default: Stack Top is indicated by address found at
locations 6,7 at program start)

The V switch sets the linker to the verbose mode. You will see the size of
code and data of each of the nonMODLIB modules in your program, as
well as a statistic about code-, data-, heap- and stack size, several start
and end addresses, etc. In the normal mode, the linker just outputs a dot
per module in both passes. (Default: non verbose)

The X switch directs the linker to deiete the '$$3.SUB' file leading to
abortion of a submit operation if errors occur during the linkage process.
(Default: submit continues)

NOTE - The linker is able to detect circular references. These are created
by so called cross-imports. These can be explained as follows: You
program two library modules, say X and Y. X.MOD uses variables or
procedures declared in Y.DEF. Y.MOD, on the other hand, uses variables
or procedures declared in X.DEF. The whole thing is often referred to as
chaotic programming style -- don't worry, this can happen to everybody.
Such a (non-fatal) mishap is announced by a message of the form

-~--- Circular reference detected -- FILNAME1 FILNAME?2

The order of the two initializations will be arbitrary. You can see how it
is actually done by using the /L switch. Piease note that there may be
circular references among more than two modules. This is just a warning
and therefore, it is non-fatal.

Implementation Guide
Linker
Page 1G-17

c) Anatomy of a linked Modula-2 Program

A linked program loaded into the memory looks as follows:

o e +<-- T switch value
stack grows down

heap grows up

e e e +<-- H switch value
| shared data (/S) |
R it +
global data
et et T +<-- D switch value

o e e +
|initialisation calls]|
et ittt T +<-- J switch value
| reserved table |
e ettt +<-- C switch value

The default values of the switches are appropriate for CP/M .COM files.

d) Examples

Some examples should show you that this sounds all a lot more complicated than it
actually is.

implementation Guide
Linker
Page 1G-18

- The program CopyFiles is to be linked. Let's name it simply 'COPY"'.

A>ML COPYFILE/O:COPY <CR»>
MODULA-2 Linker for Z80 CP/M Version 17-03-1985
e

- Next, we will link the program ERATOS. The linker works in the verbose
mode; it also generates a MAP file.

A>ML ERATOS/V/M <CR»>

MODULA-2 Linker for Z80 CP/M Version 17-03-1985
P1

ERATOS Code: 265 Data: 8201
TERM1 Code: 417 Data: 12
Initial Code Start: 100H End: 10DH Length: 14
Code Start: 10EH End: 532H Length: 1061
Data Start: 533H End: 2650H Length: 8477
Heap Start: 2651H

Stack and Heap Space: 48037 bytes (on this System)

P2acrrseennienanas

A>

This results in 'ERATOS.COM' and 'ERATOS.MAP'.

impiementation Guide
Patcher
Page 1G-19

4. MP the Patcher

a) General Description

The patcher serves to install the search paths in the compiler and the linker. All
other programs do not reguire installation. Normally, installation is performed once
only. The system as distributed is installed as used for "normal" two drive systems,
i.e. search paths "@AB" for both data and programs in compiler and linker.,

WARNING - do NOT install on your distribution disks! Use your master diskette
for this purpose.

b) Technical Description

ProgramName MP

Input User entered search path definition and MC.COM as well
as ML.COM.

Output Installed versions of MC.COM and ML.COM.

Switches None.

c) Examples

Refer to the Startup Guide for sample installation dialogues.

Implementation Guide
Reference Lister
Page 1G-20

5. MX the Reference Lister

a) General Description

This tool serves to create line numbered listings with or without an added reference
table that lists for every identifier the numbers of each line on which it appears.

Every 16 lines, MX writes a dot to the console.

There are several formatting options provided, including page length, line length,
direct output to the printer, and suppression of the table generation. The reference
lister -as the compiler lister- automatically expands hard tabs.

The reference lister sets a header at the top of each page. For each program listing
page, this header takes the form

Reference-Lister for MODULA-2 Version 19-03-1985 Page P-x
Listing for : FILENAME.TYP

On all reference table pages, the header looks like

Reference-Lister for MODULA-2 Version 19-03-1985 Page X-x
Listing for : FILENAME.TYP

Where 'x' denotes the actual page number in both headers.

Every 16 program lines, a dot is written to the console to show the program's
progress.

Implementation Guide
Reference Lister
Page 1G-21

b) Technical Description

ProgramName MX

Input Files of type DEF or MOD. Default file type is MOD, i.e. by
specifying no file type, you will get a reference listing of the
MOD file of the specified name. This is equal to the compiler's

practice.
Output Files of type REF, or direct printer output (see /P).
Switches /l:ddd, /L:ddd, /P, /W

The I switch serves to define how many spaces the text shall be indented
from left margin in characters. (Defautt: 15 characters indent)

The L switch allows to set the page length, i.e. the number of program
lines that will be printed per page. Please note that the header is 3 lines
high and cannot be changed. (Default: 60 program lines per page)

Setting the P switch routes the output directly to the printer instead of
creating an output file. (Default: File output)

The W switch controls the generation of a reference table. Setting /W
suppresses this table. (Default: table added to the listing)

Implementation Guide
Reference Lister
Page 1G-22

c) Examples

- A listing of the definition module InOut is to be generated. No indent shall be
made.

A>MX INOUT.DEF/1:0 <CR>
MODUL.A-2 Reference Lister for Z80 CP/M Version 19-03-1985
Writing Reference Listing of INOUT.DEF

- The implementation module InOut shall be listed without a reference
table, output shall be routed to the printer directly.

A>MX INOUT/P/W <CR>

Modula-2 Reference Lister for Z80 CP/M Version 19-03-1985
Printing Listing of INOUT.MOD

implementation Guide
REL - MRL Converter
Page 1G-23

6. MR the REL-MRL Converter

a) General Description

This program is used only if you want to integrate assembler modules into your
program. If you don't intend to use assembly language modules, you can skip this
section.

To be able to integrate assembler modules into a Modula-2 program, you have to
read the assembly language interfacing section in the Advanced Programming
Guide.

The duty of MR is to convert machine code that is stored as a subset of the
Microsoft REL format to the Modula-2 MRL format.

To accomplish this task, you have to provide
- The REL file of the module

- Eventually a name translation table stored in a R2M typed file.

The format of the name translation table is described in the above- cited assembly
language interfacing section of the Advanced Programming Guide.

Implementation Guide
REL - MRL Converter
Page 1G-24

b) Technical Description

ProgramName MR

Input Files of type REL, eventually a translate table in a file of type
R2M..

Output A MRL typed file.

Switches /C, /C:FileName, /O:FileName, /V

The C switch serves to specify a translation table file. Its name defaults
to the name of the input file. If you want to use this R2M file, use /C
only. By specifying a file name, the file FILENAME.R2M is used as a
translation table. This is useful to build a 'library' of names to be
translated and their translations. {Default: no translation table)

The O switch altlows you to specify the output file name. This file name
also serves as the default module base name, if no translation is done. An
example: An assembled module containing the entry points GET and PUT is
is translated by

A>MR JODRV/O:PORTIO <CR>

This results in an MRL module containg the entry points PORTIO.GET and
PORTIO.PUT.

The V switch serves to switch MR into the verbose mode. Has only an
effect if a translation table is used. In that case, all the translations are
listed on the screen.

implementation Guide
REL - MRL Converter
Page 1G-25

c) Examples

- Let us convert MOVES.REL to MOVES.MRL using MOVES.R2M as translation
table.

A>MR MOVES/C/V <CR>
Modula-2 REL to MRL converter for Z80 CP/M Version 27-12-1984

MOVES --> Moves

MVL --> Moves.Movel eft
MVR --> Moves.MoveRight
FILL --> Moves.Fill

A>

Chapter 2. System Restrictions

There are several restrictions you have to watch for. These are:

- string constants may not exceed 128 characters. They have to be on
a single source line.

- structures may have a maximum size of 32767 bytes. This applies to
records and arrays.

- Standard procedure and function procedure names may not be
redefined nor assigned to procedure variables.

- Type transfers by means of Type ldentifiers are restricted to either
both argument and result having array or record structure
(structured) or being scalars (unstructured), even if the sizes are
the same.

- CASE labels may be in the INTEGER range only (-32768 .. 32767).
The compiler allows for 256 labels (where each element of a range
counts as one label) per CASE statement.

- FOR statements may have upper bound values up to MAX(INTEGER)
- StepWidth, or MAX(CARDINAL) - StepWidth, for FOR loops over
the INTEGER or CARDINAL range, respectively. An attempt to use
higher values generates an eternal loop because of the way bound
conditions are checked in the generated code. The same phenomenon
allows downcounting but to MIN(INTEGER) - StepWidth resp.
StepWidth for INTEGER and CARDINAL FOR loops. The lower bound
rule applies to enumerations, too.

Implementation Guide

System Res
Page 1G-26

trictions

No runtime error checking for INTEGER/CARDINAL overflow and
underflow, use of uninitialized variables or NIL pointer references is
done. The only error that gets detected is a stack - heap collision.

The maximum length of names which can be handled by the linker
are 24 characters. All of these identifiers have the form
"ModuleName.ObjectName'". The compiler issues a warning, if two
identifiers are differing only after the 14th character.

There may be 16 LOOPs nested into each other, maximum.

The compiler allows for 16 nesting levels, at most. This means that
you cannot nest more than 16 modules, procedures and/or WITH
statements. LOOP statements don't affect this nesting.

No variable expressions may be passed to an ARRAY OF WORD.
Constants and constant expressions as well as variables may be
passed freely, however.

The index of a ARRAY OF WORD is equal to the size (-1) of the
object passed to it in bytes. It is suggested to access ARRAY OF
WORD parameters bytewyse by using a POINTER TO CHAR. All this
results from TSIZE(WORD) = 2.

Iimplementation Guide
The Standard Library
Page 1G-27

Chapter 3. The Standard Library

Section 1. Iintroduction

Modula~2's great advantage is that you can buid toolboxes for specific purposes using
library modules. So, an important part of each implementation of Modula-2 is a
library that provides some basic tools as well as some more advanced ones. To have
some portability ensured, a standard library has been defined by Prof. Wirth,
Meanwhile, MODUS, the Modula-2 User's Society, works on an extended standard
library. Some of these proposed modules are present in the utility library of this
implementation (i.e. Strings, MathLib, Conversions and ConvertReal). As soon as the
standard is fixed, we will adopt it. Up to that time, the Volition Systems approach
will be adopted as far as possible.

The standard library provides several modules originaily postulated by Prof. Wirth in
Programming in Modula-2. These modules provide simple, easy to use, and portable
/0. Because of that portability, they are not best adapted to the environment which
they run on, except perhaps for the Lilith computer. The higher the level, the more
compromises were made regarding space requirements.

The whole standard library is constructed in levels or layers.

The top layer consists of InOut and ReallnOut. It is designed to be used for dialog
programming, i.e. for interaction between operator and computer.

The second layer is formed by Texts and RealTexts. This layer is in charge of the
text functions, i.e. providing procedures to read from and write to files and devices
in terms of text units like characters and lines. Also, it provides means to detect
end-of-line and end-of-text marks.

End-of-text (EOT) may or may not be identical to the end-of-file, since the CP/M
operating system accesses files in terms of 128-byte sectors, and you normally don't
care about them. These sectors are "translated" to single characters, lines, numbers,
etc. by the lowest standard library layer which consists of the modules SeglQ
{sequential file access) and the utility modules Conversions and ConvertReal which
provide conversions between ASCIl text and the standard data types CARDINAL,
INTEGER, and REAL. The CARDINAL conversion may be to any base from 2 to 63.

Implementation Guide
The Standard Library
Page 1G-28

Generally speaking, these modules are useful to make programs that have to be
portable among several impiementations of Modula-2. If you want small programs, you
have to resort to other |/O modules, eventually written by yourself. You can use all
the utility library modules to accomplish this task.

There is one exception to what has been said above: The module SYSTEM. Although
it is a standard module that is present in every Modula-2 implementation, its task is
to allow machine access, forcing machine dependency. SYSTEM is built into the
compiler of each Modula-2 implementation. It can be thought of as a part of the
standard objects.

NOTE - To keep the amount of paper ‘eaten' away small, all of the
listings of definition modules are presented here with most of the
comments removed. Please list the sources on your program disks
and keep these listings at hand when using the modules.

Impiementation Guide
The Standard Library / Terminal
Page 1G-29

Section 2. Terminal

1. General Description

The moduie Terminal is one of the standard moduies postulated by Prof. Wirth in
Programming in Modula-2. [t contains routines to read and write characters and
character strings from and to console.

2. Character Input

BusyRead returns either ASCIl.nul (0C) if no character was typed, or the character
that was typed. No echo occurs.

Read waits until a character is entered at the console. The character is then echoed

to the console and returned.

3. String Input

The string input procedures ReadString and ReadLn offer the following common CP/M
edit facilities:

-~ ASCll.bs (Backspace) or ASCll.del causes the deletion of the last
character in the string, if there are any characters in it.

- Ctri-X or ASCil.can clears the whole string entered so far.

- Ctri-C or ASCIl.etx causes program abortion and return to CP/M
(HALT) if entered as the first character of the input. Otherwise, it
has no effect.

Implementation Guide
The Standard Library / Terminal
Page 1G-30

ReadString terminates its operation as soon as a space or any character with a lower
ordinal number in the ASCII| alphabet is entered, except for the edit function
characters. This is not quite comfortable on CP/M. Therefore, ReadlLn offers a similar
function, but only ASCll.cr or ASCII.If are recognized as terminators. So, use ReadlLn
to get a 'mormal' input line containing spaces etc. with a single call of an input
procedure. The ReadlLn procedure is compatible to the Volition Systems
implementation of Terminal.

The character that caused termination of a read string operation is assigned to the
variable termCH.

in general, it useful to read file names and single (text)word items with ReadString,
and items that may contain blanks by ReadlLn.

NOTE - ReadString as well as ReadlLn ignore leading blanks.

Impiementation Guide
The Standard Library / Terminal
Page 1G-31

4. The Interface

DEFINITION MODULE Terminal;

EXPORT QUALIFIED
termCH,
Read, BusyRead, ReadAgain, ReadString, ReadlLn,

Write,

VAR

WriteString, WritelLn;

termCH: CHAR;

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE

END Terminal.

Read(VAR ch: CHAR);

ReadString(VAR string: ARRAY OF CHAR);
ReadLn(VAR string: ARRAY OF CHAR);
BusyRead(VAR ch: CHAR);

ReadAgain;

Write(ch: CHAR);
WriteString(string: ARRAY OF CHAR);
WritelLn;

Implementation Guide
The Standard Library / SeqlO
Page 1G-32

Section 3. SeqlO (Files)

1. General Description

This module is not truly portable among several implementations; it has to make some
compromises regarding machine dependency.

it is the standard file system provided with this implementation. It concentrates on
buffered sequential file 1/0O and character oriented device 10. Random file |/0O is
provided by the module Files.

SeqlO offers several unique features that make it easy to use, yet it is full featured
and very powerful.

2. File Names

The file names accepted by SeqlO procedures can have the following form:

FileName = [Drive ":"] Name ["." Extension] | Device ":".

Drive ='e' | .| '"P.

Name = FnChar [FnChar [FnChar [FnChar [FnChar [FnChar
[FnChar [FnChar]]11]1] .

Extension = FnChar [FnChar [FnChar]] .

Device = "CON" I "KRD" I "TRM" I ".sT" I "RDR" I "PUN",

FnChar =

IIAI ‘ N | d l g! I . l 11 | 9 l . | 19! | |$' | 191 ‘ %!

In words: A file name consists of an optional drive specifier denoting a CP/M drive
(the character may be lower case) separated by a colon from the name part. The
name part (which has to be specified) consists of 1 to 8 characters or digits. The
optional extension (often referred to as the file type) is separated by a dot and
consists of 1 to 3 characters or digits. Alternatively, you can also specify a device
name which consists of three letters and a semicolon.

Implementation Guide
The Standard Library / SeqlO
Page 1:-33

In name, extension, or device name, no interpunctuation symbols are accepted.

3. Error Handling

Errors may be processed in two ways when using SeqlO:

- The traditional way, testing for errors after each read/write opera-
tion, using the FileStatus procedure.

- The easier way using special error handler procedures, that can be
assigned to a file after it has been created or opened.

A file's handler procedure is automatically invoked after a read/write error has heen
detected. A handler procedure has to comply to a procedure type with the following
declaration:

TYPE FileHandler = PROCEDURE(VAR FILE);

To allow for general handlers, there is a utility procedure that retrieves a file's
name. So, you can write literal error messages including the file's name and take any
necessary actions (like closing the file).

WARNING - Handler procedures should limit their actions regarding SeqlO to
closing the erroneous file. Otherwise, it would be possible that the
handler gets re-invoked because of a second error.

To attach a handler to a file, use the SetFileHandler procedure after the file has
been successfully opened or created.

implementation Guide
The Standard Library / SeqlO
Page 1G-34

4. Reading From Files

A typical command sequence to read from a file would be:

status := Open(file, name)

IF status = FileOK THEN
SetFileHandler(file, MyHandler);
WHILE NOT EOF(file) DO

Read(file, char);
END;

ELSE
WriteErrorMessage(file, message).

END;:

5. Writing to Files

To write to a file, you could use the following code:

status := Create(file, name)
IF status = FileOK THEN
SetFileHandler(file, MyHandler);
REPEAT
Write(file, char):
UNTIL dataExhausted OR FileStatus(f) # FileOK;
status := Close(file);
IF status = FileOK THEN
WriteErrorMessage(status);
END;
ELSE
WriteErrorMessage(status).
END:

NOTE - There is no implicit file closing on program end in Modula-2. Files are
unknown to the compiler, so it cannot generate such code. Therefore, a
call to close is mandatory for output files. For input files, close is
necessary to reclaim the space used by the file and its buffer.

Implementation Guide
The Standard Library / SeqlO
Page 1G-35

6. Deleting Files

The Delete procedure which serves this purpose allows for ambigous file name
specifications by including question marks and/or stars in the file name. Naturally,
devices cannot be deleted... The procedure is straightforward:

status := Delete(name);

IF status # FilteOK THEN
WriteErrorMessage(status);

END:

7. Renaming Files

The file denoted by oldName is renamed to newName. No ambiguous file names can be
used for the purpose. An example:

status := Rename(oldName, newName);

{F status # FileOK THEN
WriteErrorMessage(status);

END:

8. Changing the File Buffer Size

SeqlO allows to set the size of a file's internal buffer. This buffer is assigned to each
disk file. Device files don't need a buffer since devices are character oriented. The
default buffer size is 1024 bytes. This equals 8 CP/M logical disk sectors. The buffer
has to be one sector in size, minimum. Its maximum size is limited to 32k bytes or
256 sectors. if you attempt to set a larger size, or a zero buffer, the SetBufferSize
procedure just leaves everything as it was. An example:

SetBufferSize(24); (* make 3k buffers *)

This statement directs SeqlO to assign 3k buffers to all files susequently opened or
created. Already opened or created files aren't altered.

impiementation Guide
The Standard Library / Seq!O
Page 1G-36

The bottleneck in disk 1/0 is almost always the transfer of data from and to the disk.
An example: During the development of the Modula-2 Compiler, the buffer size of the
files were changed from 512 bytes (4 sectors) to what was available between data
end and shared data start. This resulted in buffers of about 1.5 kBytes. This
increased buffer sizes made the compiler faster by a factor of almost 2 without any
other changes!

There is some optimum measure for every case, though. Increasing the compiler's
buffers further resulted in minor speedups. There are even some applications where it
is desirable to use only a single sector buffer.

9. An Application of SeqlO

MODULE CopyFiles:

FROM SeglO IMPORT
FILE, FileState, FileStatus,
EOF,
SetBufferSize,
Open, Create, Read, Write, Close;

FROM Terminal IMPORT WriteString, ReadlLn, WritelLn;

VAR
f, g FILE;
ch : CHAR:

fName, gName: ARRAY [0..13] OF CHAR (* 'D:FILENAME.TYP' *)

PROCEDURE CioseErrorMessage{name: ARRAY OF CHAR);
BEGIN
WriteString('---- Error In Closing File "');
WriteString(gName);
WriteString('™");
Writeln:
END CloseErrorMessage;

BEGIN
WriteString('CopyFiles'); WritelLn;
LOOP
WritelLn;
WriteString('Copy From File ("C to abort): ');
ReadL.n{fName);
iF Open(f, fName) = FileOK THEN

Impiementation Guide
The Standard Library / SeqlO
Page 1G-37

REPEAT
WritelLn;
WriteString('Copy To File ("C to abort): ');
ReadLn(gName);
UNTIL (fName # gName) & (Create(g, gName) = FileOK);
WHILE NOT EOF(f) DO

Read(f, ch):
Write(g, ch);
END:;

IF Close(g) # FileOK THEN
CloseErrorMessage(gName);

END:;

ELSE
WriteString(*---- Cannot Find "');
WriteString(fName);
WriteString('");
WritelLn;

END;

IF Close(f) # FileOK THEN
CloseErrorMessage(fName);

END:

END; (* LOOP *)
END CopyFiles.

Iimplementation Guide
The Standard Library / SeqlO
Page 1G-38

10. The Interface

DEFINITION MODULE SeqlO;

EXPORT QUALIFIED
FILE, FileState, FileHandler,
FileStatus, SetFileHandler, DummyHandler, GetFileName,
Open, Create, SetBufferSize,
Close, Delete, Rename,
Read, EOF, Write;

TYPE
FILE;

FileState = (FileOK, DirOpsOK,
NameError, DeviceError, EndError, UseError);

FileHandler = PROCEDURE (VAR FILE);

PROCEDURE Open(VAR f: FILE; name: ARRAY OF CHAR): FileState;
PROCEDURE Create(VAR f: FILE; name: ARRAY OF CHAR): FileState;
PROCEDURE SetBufferSize(sectors: CARDINAL);

PROCEDURE Delete(name: ARRAY OF CHAR; VAR reply: ErrorType): FileState;
PROCEDURE Rename(old, new: ARRAY OF CHAR): FileStatel
PROCEDURE Close(VAR f: FILE);

PROCEDURE Write(VAR f: FILE; info: CHAR);
PROCEDURE Read(VAR f: FILE; VAR info: CHARY);
PROCEDURE EOF(f: FILE): BOOLEAN;

PROCEDURE FiteStatus(f: FILE): FileState;
PROCEDURE DummyHandler(VAR f: FILE);

PROCEDURE SetFilehandler(f: FILE; handler: FileHandler);
PROCEDURE GetFileName(f: FILE; VAR name: ARRAY OF CHAR);

END SeqlO.

Implementation Guide
The Standard Library / Texts
Page 1G-39

Section 4. Texts

1. General Description

Texts provides text stream operations. A TEXT variable gets connected (associated)
to a previously opened or created FILE variable. Contrary to SeqlQ's operations,
Texts interprets the characters it reads to be able to detect the end of an input line
(EOL) or the end of the text in the file, which is indicated either by a ~Z
(ASCll.sub) or by the physical end of file as indicated by SeqlO.EOF. So, a TEXT
variable is accessed either by character or by line. However, besides tab expansion
and interpretation of the usual CP/M control characters in interactive input from
CON:, no characters are altered or swallowed by Texts procedures.

The implementation of EOL and EOT is a lazy /O interface, i.e. EOL and EOT
become TRUE after the first "invalid" character has been read. This is necessary
because of the interactive console /O, where one can't foresee the end. This is in
contrast to SeqlO's normal interface on files. SeqlO doesn't provide an end of file
function for device files.

Three basic TEXT streams are offered by the module Texts: input, output and
console. Input and output are initially connected to the console device (i.e. CON:).
They may be redirected to other files. Console, however, cannot be redirected. This
TEXT is used for messages to the console by higher level modules, if input and/or
output have been redirected.

NOTE - A TEXT stream allows only for operations that are possible on the
associated file, i.e. it is impossible to write to an input disk file or to
read from the printer!

2. Text Output

Text output can be done using Write, WriteCard, Writelnt, WriteLn and WriteString.
All of these procedures don't do any interpretation. You may write control characters
as well as all printable characters. Especially, an end of line consists of a cr, If
sequence in Texts just to allow the use of standard CP/M text files with the Modula-
2 System without you having to write your own text handling.

implementation Guide
The Standard Library / Texts
Page 1G-40

3. Text Input

Text input is implemented through the procedures Read, ReadAgain, ReadCard,
Readint, and Readl.n.

The Read operation is transparent, i.e. it returns all characters it reads, but it sets
the flags according to the currently read characters. The following rules are applied:

- EOT (end of text) becomes TRUE if either the associated file's
physical end is reached (indicated by SeqlO.EOF), or if a ~Z
{(ASC1!.sub) character is read.

- EOL (end of line) becomes TRUE if either EQT is TRUE or either an
ASCIllt.cr or an ASCII.If not immediately following a cr was
encountered.

ReadAgain allows to re-read the last character read.

NOTE - Calling ReadAgain multiple times without Read-ing a character in
between does NOT produce characters before the last read one, i.e. you
cannot read the second-to-last read character again by using ReadAgain!

ReadCard and Readint read cardinal or integer numbers from a text stream. They
skip any leading blanks or control characters and stop after the first character not
being a part of a number (i.e. other than '0'..'9', '-' or '+'). EOL is only TRUE after
ReadCard and Readlnt if the physical end-of-line has been encountered.

The ReadlLn procedure reads the rest of a line from a text stream. If reading from
the CON: or KBD: devices, ReadLn expands ASCIl.tab to spaces according to CP/M
rules. "X restarts the input, backspace and delete delete the last character in the
entered string. "C aborts (HALTs) the program if entered as the first character.

NOTE - Texts does NOT close any files or disconnect any TEXT variables if a
"C is entered to Readln.

NOTE - After ReadlLn, EOL is always TRUE by definition. EOT is set according
to the above-mentioned rules.

If your string is too short to hold the currently read line, EOL is set to true and
ReadlLn returns after having overread the rest of the line.

implementation Guide
The Standard Library / Texts
Page 1G-41

4. Error Handling

Error Handling under Texts may be done using either explicit tests or a handler
approach similar to SeqlO's. Handlers may be assigned to connected texts only. After
disconnecting a text, the handler is not retained. So, you will have to set the
handler after each new connection of a given TEXT.

NOTE - Whereas a FILE can be identified by a general purpose handler, this is
not possibie for TEXTs. Therefore, it is recommended to use either a very
general handler or a separate handler for each text used.

5. An Example Program

The module ET expands tabs of an input file you specify. Note that actually it is
simply a ReadLn/WriteString/WriteLn sequence of text operations that does this
expansion.

MODULE ET;

FROM Texts IMPORT
TEXT, TextState, TextHandler,
console, input, output,
SetTextHandler,
Connect, Disconnect,
ReadlLn, EOT, Write, WriteString, Writeln;

FROM SeqiO IMPORT
FILE, FileState, FileHandler,
SetFileHandler,
GetFileName,
Open, Create, Close, Delete, Rename;

FROM Strings IMPORT Pos, Length, Concat;
IMPORT Strings; (* .Delete *)
FROM ASCII IMPORT sub;

VAR
fyg: FILE:
string: ARRAY [0..100] OF CHAR;
inName,outName: ARRAY [0..13] OF CHAR;

Implementation Guide
The Standard Library / Texts
Page 1G-42

PROCEDURE WriteTextMessage(state: TextState);
BEGIN
CASE state OF
FormatError : WriteString(console, 'Format Error');

FileError : WriteString(console, 'File Error');
ConnectError: WriteString(console, 'Connect Error');
END:;

END WriteTextMessage;

PROCEDURE OutputError(state: TextState);
BEGIN
WriteLn(console):
WriteString(console, '"Output: ');
WriteTextMessage(state);
HALT;
END OQutputError;

PROCEDURE InputError(state: TextState);
BEGIN
WriteLn(console);
WriteString(console, 'Input: ');
WriteTextMessage(state);
HALT;
END inputError;

BEGIN
WriteString(console, 'ExpandTabs');
WriteLn{console);
REPEAT
WriteLn{console); WriteString(console, 'Input File: ');
ReadLn(console, inName);
UNTIL Open(f, inName) = FileOK;

Implementation Guide
The Standard Library / Texts
Page 1G-43

GetFileName(f, outName);

Strings.Delete{outName,Pos('.', outName), Length{outName) - Pos('.';,outName));
Concat{outName, '.$$$', outName);

IF (Create(g, outName) = FileOK) &

(Disconnect(output) = TextOK) & (Connect(output, g) = TextOK) &

(Disconnect(input) = TextOK) & (Connect{input, f) = TextOK) THEN

SetTextHandler(input, InputError); SetTextHandler(output, OutputError);

LOOP
Readl.n{input, string);

IF EQT{(input) THEN EXIT; END;
WriteString(output, string); WriteLn(output);

END;

Write(output, sub); {(* EOT marker *)

IF (Disconnect(output) = TextOK) & (Disconnect(input) = TextOK) &
{Close(g) = FileOK) & (Delete(inName) = FileOK) &
{Rename{outName, inName) = FileOK) THEN
WriteLn(console): WriteString(console, 'File "');
WriteString(console, inName); WriteString(console, "' converted.');

END:

END;
END ET.

Implementation Guide
The Standard Library / Texts
Page 1G-44

6. The Interface

DEFINITION MODULE Texts;
FROM SeqlO IMPORT FILE;

EXPORT QUALIFIED
TEXT, TextState, TextHandler,
input, output, console,
EOL, EOT,
TextStatus,
SetTextHandler, DummyTextHandler,
Connect, Disconnect,
Read, Readlnt, ReadCard, ReadlLn, ReadAgain,
Write, WriteString, WritelInt, WriteCard, WritelLn;

TYPE
TEXT;
TextState = (TextOK, FormatError, FileError, ConnectError);
TextHandler = PROCEDURE(TextState);

VAR
input, output, console: TEXT;

PROCEDURE EOL(t: TEXT): BOOLEAN;
PROCEDURE EOT(t: TEXT): BOOLEAN;

PROCEDURE TextStatus(t: TEXT): TextState;
PROCEDURE SetTextHandler(t: TEXT; handler: TextHandler);
PROCEDURE DummyTextHandler(TextState);

PROCEDURE Connect(VAR t: TEXT; f: FILE): TextState:
PROCEDURE Disconnect(VAR t: TEXT): TextState;

PROCEDURE Read(t: TEXT; VAR ch: CHAR);
PROCEDURE Readint(t: TEXT; VAR i: INTEGER);
PROCEDURE ReadCard(t: TEXT; VAR c: CARDINAL);
PROCEDURE ReadLn(t: TEXT; VAR s: ARRAY OF CHAR);
PROCEDURE ReadAgain(t: TEXT);

PROCEDURE Write(t: TEXT; ch: CHAR);

PROCEDURE WriteString(t: TEXT; s: ARRAY OF CHAR);
PROCEDURE Writelnt(t: TEXT; it INTEGER; n: CARDINAL);
PROCEDURE WriteCard(t: TEXT; c,n: CARDINAL);
PROCEDURE WritelLn(t: TEXT);

END Texts.

implementation Guide
The Standard Library / RealTexts
Page 1G-45

Section 5. RealTexts

1. General Description

Real Texts provides two procedures that read and write real numbers to text streams.

2. WriteReal

The parameter n in WriteReal determines the overall length of the resulting ASCII
representation of the REAL variable r on the text stream t.

The parameter digits is used to determine the number of fractional digits to be
calcufated. The maximum number of digits should not exceed 7, since the REAL data
type does not provide for more than 7 significant digits. If digits < O, then the
exponential representation is produced (i.e. 3.141593E+00); if digits = 0, no fraction
and no decimal dot is generated (i.e. 100107). |f digits > 0, the fixed point
representation (2.718282) with digits fractional digits is produced.

3. ReadReal

ReadReal reads the REAL variable r from the text stream t. It disregards leading
blanks and control characters and stops after the first character that is not part of
the REAL number, similar to the number reading procedures found in Texts.

4. The Interface

DEFINITION MODULE RealTexts;

FROM Texts IMPORT TEXT;

PROCEDURE ReadReal(VAR t: TEXT; VAR r: REAL);

PROCEDURE WriteReal(VAR t: TEXT; r: REAL; n: CARDINAL; digits: INTEGER);
END RealTexts.

Implementation Guide
The Standard Library / InOut
Page 1G-46

Section 6. InOut

1. General Description

InOut provides standard |/O with redirection from the console to files. It is the
highest level module in the standard library. Its definition is contained in N.Wirth: .
Programming in Modula-2 on page 103 ff.

2. 1/0O Redirection

The /0 redirection procedures (Openlnput, OpenQutput) always ask for a file name
at the console. They issue the prompts 'in>' respectively 'out>' and then wait for you
to enter a file name. If the file couldn't be found, the boolean variable Done is set
to FALSE. Upon successful operation, TRUE is returned in Done.

If the file name that was entered has no dot ('.') in it, the two procedures append
the default file type (also called extension) defext to it. The first three characters
in defext are considered, at most. All file names are uppercased; there is no way to
inctude lower case characters in file name using either InOut or the standard file
system SeqlO. You can include a drive specifier in the file name, or enter one of the
following CP/M device names:

CON: (console 1/0; uses CP/M standard console 1/0, checks for ~C)
KBD: (Keyboard input; uses CP/M direct input, checks for ~C)
TRM: (Screen output; uses CP/M direct output)

LST: (Printer output; uses CP/M list output)

RDR: (Reader input; uses CP/M reader input)

PUN: (Punch output; uses CP/M punch output)

To return to normal console /0 (CON:), use the procedures Closelnput and
CloseQutput, respectively.

NOTE - A call to CloseOutput is mandatory to record an output file perma-
nently.

Implementation Guide
The Standard Library / InQut
Page 1G-47

If a program that uses input redirection ends without executing a Closelnput, no
damage whatsoever will effect from this, although this practice isn't recommended.

NOTE - The external files connected to input and output use some heap space.

Failing to close input (or output) does not reclaim this heap space until
the program terminates, i.e. returns to CP/M.

All the read operations take place on the current input file, or the console if no
redirection is in effect.

All write operations go to the current output file, or to the console if no redirection
is in effect.

NOTE - There is no provision to redirect the input or output from within your
program. Only the console operator can redirect it.

3. Input

There are procedures for character and for line input.

Read provides for single character input. Read interprets ASCll.cr as the line end
character. If a line feed follows the carriage return, it gets swallowed by Read. This
complements the behaviour of Write. If multiple LF's follow a CR, only the first one
gets stripped.

The last character read can be re-read by calling ReadAgain.

NOTE - ReadAgain returns but the last character read. There is no way to
retrieve, for instance, the second-to-last character read.

Implementation Guide
The Standard Library / InOut
Page 1G-48

ReadString stops reading as soon as a white character is entered. A white character
is anything that is below 41C and is not an editing character. This means, a space
and every control character except "X, BS, DEL or “C stops the read operation.

The edit functions available are:

DEL: delete last character in string.

BS: same as above.

~“X: clear whole string; start over.

~C: immediate program abort. The program immediately returns to the
Operating System without closing any files, in particular.

4. OQutput

As stated in the standard, WriteLn has the same effect as Write(EOL). In our
implementation, this means that writing an ASCIIl.cr character forces the writing of a
ASCII.If character. Read does complement this pbehaviour by swallowing a If
immediately following a cr.

5. An Example Program

The following small program types a file to the console, much like CP/M's TYPE
command, but paged, i.e. it waits after every screen it wrote for you hitting any key
to continue with the next screen.

MODULE TypeAFile;
FROM InOut IMPORT
EOL,
Done,
Openlnput, Closelnput, Read, Write, WriteLn, WriteString;

IMPORT Texts; (* the console text *)

CONST
linesPerScreen = 23; (* leave one for prompt *)

implementation Guide
The Standard Library / InOut

Page 1G-49
VAR
ch: CHAR;
lines: CARDINAL:
BEGIN
writeString(‘Paged File Typing'); WritelLn;
LOOP
WriteString('Enter Name of File to Type: ');
Open!nput(''): (* prompts on next line *)
IF NOT Done THEN EXIT; END:
lines := O
LOOP
Read{ch);
IF NOT Done THEN EXIT: END:
Write{ch);
IF ch = EOL THEN
INC{lines);
IF lines = linesPerScreen THEN
WriteString('-- More --');
Text.Read(Text.console, ch); (* get input from console *)
lines := 0O
Writel.n;
END:
END;
END; (* LOOP *)
Closelnput;
WritelLn;
WriteString('--- EOF ---');
Writeln;
END:;

END TypeAFile.

Implementation Guide
The Standard Library / InQOut
Page 1G-50

6. The Interface

DEFINITION MODULE 1nQut;

EXPORT QUALIFIED
EOL, Done,
Openlnput, OpenOutput, Closelnput, CloseOutput,
Read, ReadString, ReadInt, ReadCard,
Write, WriteLn, WriteString,
Writelnt, WriteCard, WriteOct, WriteHex;

CONST
EOL = 15C;

VAR
Done: BOOLEAN;

PROCEDURE Openinput(defext: ARRAY OF CHAR);:
PROCEDURE OpenOutput(defext: ARRAY OF CHAR);
PROCEDURE Closelnput;

PROCEDURE CloseOutput;

PROCEDURE Read(VAR ch: CHAR);

PROCEDURE ReadString(VAR s: ARRAY OF CHAR);
PROCEDURE ReadInt(VAR x: INTEGER);
PROCEDURE ReadCard(VAR x: CARDINAL);

PROCEDURE Write{(ch: CHAR);

PROCEDURE WritelLn;

PROCEDURE WriteString(s: ARRAY OF CHAR);
PROCEDURE Writelnt(x: INTEGER; n: CARDINAL);
PROCEDURE WriteCard{x, n: CARDINAL);
PROCEDURE WriteOct(x,n: CARDINAL);
PROCEDURE WriteHex(x,n: CARDINAL);

END InQut.

impiementation Guide
The Standard Library / ReallnOut
‘ Page 1G-51

Section 7. ReallnQut

1. General Description

The purpose of this module is to allow REAL number input and output. it is one of
the standard modules defined in Programming in Modula-2. The WriteRealOct
procedure, which is hardly used by application programs, has been removed from this
module. More versatile REAL output formatting can be found in the ConvertReal
and RealTexts modules. ReallnQut internally relies upon these modules.

2. REAL Input

REAL numbers are accepted nearly free-form. The EBNF notation of the accepted
input looks like:

ReadableReal Sign Mantissa [('E'|'e') Sign Number].

Sign - [l+lll_l].

Mantissa = Number [".' Number] | '.' Number.
Number = Digit {Digit}.

Digit = 'o'?..|'9'.

Examples of correct REAL numbers:

1.0 O 0.0000000007 1E38 1.978e-9 +15.793e-5 20000.9

Implementation Guide
The Standard Library / ReallnQOut
Page 1G-52

The following conditions have to be fulfilled by your input:

- The maximum REAL value is about 1.7e38 (< 2127), the smallest
non-zero, positive REAL is about 3e-39 (2-128),

- The chosen format allows for about 7 digits of precision because it
uses 24 binary mantissa digits internally. Numbers with more
significant digits will be truncated; the digits that aren't
representable are discarded (if they are behind the '.'") or used to
get the exponent.

- The maximum exponent of a number is 38. The minimum value that
leads to non-zero numbers is -39.

3. REAL Output

The output formatting is rather limited, because it uses always the scientific format.
The scientific format contains up to 7 mantissa digits. The minimum length of the
output is 6 characters ('0.E+00'). Setting the format-parameter n to more than 12
results in leading blanks in the output.

4. The Interface

DEFINITION MODULE ReallnQut;
EXPORT QUALIFIED ReadReal, WriteReal;

PROCEDURE ReadReal(VAR r: REAL);
PROCEDURE WriteReal(r: REAL: width: CARDINAL);

END ReallnQut.

Implementation Guide
The Standard Library / RealinOut
Page 1G-53

Section 8. MathLib

1. General Description

MathLib was originally postulated by Prof. Wirth in Programming in Modula-2 (page
85) as MathLib0. In an attempt to standardize a larger library, MODUS (Modula-2
Users Society) has created a draft standard that adds the power function to the
original MathLibO and names it simply MathLib.

Please keep in mind that REALs have a very finite precision. The calculations allow
for a theoretic maximum precision of about 7.2 decimal digits (24 binary mantissa
bits --> log10(224) = 7.2...). For numbers near the maximum representable REAL
number, the difference between two adjacent representable numbers is 2(127-24) -
2103 - 1031, S0, there is no use to print results of any calculations with more than 7
significant digits -- you just generate a '"better" precision than the computer does.

The -algorithms used were chosen because their average performance is sufficient and
their execution times compare favorable to those of most competitors. None of the
calculations are iterative. If series are evaluated, only a fixed number of components
gets calculated. These components are spelled out instead of iterated.

If you are mathematically inclined or in need of better precision, D.E. Knuth offers a
wealth of numerical algorithms in volume 2 of The Art of Computer Programming,
Seminumerical Algorithms.

2. Error Handling

Errors during the calculation of functions are fatal. The program is halted with an
appropriate message to the terminal using the Terminal module. An exception hereto
are sin and cos, which may cause an overflow if too big arguments are passed to
them.

Implementation Guide
The Standard Library / ReallnOut
Page 1G-54

3. Trigonometric Function Procedures

MathLib contains a set of trigonometric function procedures, namely the sine (sin),
the cosine (cos) and the arctangent (arctan). Out of this set, every other
trigonometric function can be calculated. In fact, even the cosine isn't necessary to
do so.

WARNING - Do not use arguments greater than 32767.0 for sine and cosine.
Due to the algorithm used for these procedures, an overflow could occur
otherwise.

4. Exponential and Power Function Procedures

The set of exponential and power functions includes the natural logarithm (In) to the
base e = 2.7182818. Note that the precision of the calculations is limited as is the
range. The largest argument of exp leading to a successful calculation is about 88 (<
In(2°127)). The natural logarithm works on positive numbers greater than O only.

The power function allows to raise a REAL number x to the REAL power vy.
The square root sqrt works on positive arguments only.

WARNING - exp arguments may be up to 88, power allows for x =
In(MAX(REAL)) / iIn(y) , maximum, In arguments must be greater
than 0 and sqrt doesn't accept negative argument values.

implementation Guide
The Standard Library / RealinOut
Page 1G-55

5. Conversion Function Procedures

The entier and real functions provide conversions between INTEGERs and
REALs in both ways.

WARNING - entier and real work on the INTEGER range only. entier returns
the maximum or minimum INTEGER values for arguments that are out of
the integer bounds.

6. The Interface

DEFINITION MODUL.E MathLib;

EXPORT QUALIFIED
sqrt, exp, In, power,
sin, cos, arctan,
real, entier;

PROCEDURE sqrt(x : REAL): REAL;
PROCEDURE exp(x : REAL): REAL:
PROCEDURE In(x : REAL): REAL:
PROCEDURE power(x, y : REAL): REAL;
PROCEDURE sin(x : REAL): REAL;
PROCEDURE cos(x : REAL): REAL;
PROCEDURE arctan(x : REAL): REAL;
PROCEDURE real(i: INTEGER): REAL;
PROCEDURE entier(x : REAL): INTEGER;

END MathLib.

implementation Guide
The Standard Library / SYSTEM
Page 1G-56

Section 9. SYSTEM

1. General Description

This module is present in every Modula-2 implementation. It covers everything
necessary to go down to the machine level. Its use most certainly makes a module
nonportable.

NOTE - Although SYSTEM.DEF is listed here, it is in fact built into the
compiler. This is inevitable because it contains some generic compile time
functions(i.e. TSIZE, SIZE). Therefore, you cannot modify SYSTEM or
create your own implementation of it.

2. Normal Contents

The ADDRESS type is officially declared as a pointer to a word. It is assignment
compatible with all pointer types.

The type WORD is a 16 bit value. lts special property is that it can serve as a
general purpose 16 bit parameter. This means that a WORD parameter can be
substituted by INTEGERs, CARDINALs, enumerations of more than 256 elements and
subranges thereof, ADDRESSes, and pointers.

The function ADR returns the adress of its parameter. The parameter may be any
variable, but no procedure. Types and constants do not have addresses; they are so
called compile time objects.

The SIZE and TSIZE functions return the size of their parameter. In SIZE, any
variable may be passed as a parameter. In TSIZE, the parameter is a type, optionally
followed by tagfields (given your parameter is a variant record). In SIZE, no
tagfields may be specified.

Impliementation Guide
The Standard Library / SYSTEM
Page 1G-57

3. Special Additions: Storage Management

The procedures ALLOCATE and DEALLOCATE are normally located in a module
called Storage. This would allow for writing a proprietary heap management. This
possibility does not exist in our implementation, at the moment. Currently, a first fit
algorithm allocating at least 4 bytes per item, for a bigger item just its size, is used.

ALLOCATE returns NIL if there wasn't enough room to allocate a given item in the
heap.

The Storage module wili be supplied in a later version.

NOTE - for ROM-based applications, it is necessary to know that the heap has
to reside beiow the stack in the memory. This is necessary because a
stack-heap collision test is made before each procedure entry and also
before each load of a tonger object (record, array or string constant) onto
the stack. The runtime library source is available for customers needing
access to it.

Implementation Guide
The Standard Library / SYSTEM
Page 1G-58

4. The Interface

DEFINITION MODULE SYSTEM; (*--- COMPILER BUILT IN ---%)

EXPORT QUALIFIED
ADDRESS, WORD,
ADR, StZE, TSIZE,
ALLOCATE, DEALLOCATE;

TYPE
WORD;
ADDRESS = POINTER TO WORD:;

PROCEDURE ADR(AnyVar): ADDRESS;
PROCEDURE SIZE(AnyVar): CARDINAL:
PROCEDURE TSIZE(AnyType, tagl,): CARDINAL;

PROCEDURE ALLOCATE(VAR pointer: ADDRESS; size: CARDINAL);
PROCEDURE DEALLOCATE(VAR pointer: ADDRESS; size: CARDINAL);

END SYSTEM.

implementation Guide
The Utility Library
Page 1G-59

Chapter 1. The Utility Library

Section 1. Introduction

The utility library's purpose is to make life a little bit easier for the programmer by
providing an extended environment.

This includes modules that provide fast memory transfers and initialization, operating
system access, string handling primitives, number/string conversions, ASCI| control
character constant definitions, as well as others.

These modules provide you with a base to make your own modules that fit specific
needs of a program, as for instance fully checked |/O procedures, etc.

The examples in this chapter most often are a little bit narrow-chested and do not
cover any and all possible uses of the modules. Feel free to find your own
applications!

implementation Guide
The Utility Library / ASCII
Page 1G-60

Sectinn 2. ASCII

1. General Description

ASCI I provides all ASCII control characters by their official ASCII shorthands.

The related module Controls provides the same constants as control characters as
entered at the keyboard (CtrlA,...).

2. The Interface

DEFINITION MODULE ASClI;

EXPORT QUALIFIED
nul, soh, stx, etx, eot, enqg, ack, bel,
bs, ht, f, vt, ff, cr, so, si,
dle, dct, dc2, dc3, dc4, nak, syn, etb,
can, em, sub, esc, fs, gs, rs, us,

del;
CONST

nul = 00C; soh = 01C; stx = 02C; etx = 03C;
eot = 04C; enqg = 05C; ack = 06C: bel = 07C;
bs = 10C; ht = 11C; 1f = 12C; vt = 13C;
ff = 14C; cr = 15C; so = 16C; si = 17C;
dle = 20C; dcl1 = 21C; dc2 = 22C; dc3 = 23C;
dcd4 = 24C; nak = 25C: syn = 26C; etb = 27C;
can = 30C; em = 31C; sub = 32C; esc = 33C;
fs =34C; gs = 35C:; rs = 36C; us = 37C;
del = 177C;

END ASClIlI.

Implementation Guide
The Utility Library / Chaining
Page 1G-61

Section 3. Chaining

1. General Description

The module Chaining provides a procedure Chain that can handie all the special
formats generated by the linker's diverse switches (/J,/N). Its usage is described in
detail in the Advanced Programming Guide.

The file names accepted by Chain are normal CP/M file names consisting of an
optional drive specifier, the file name, and the optional type.

Examples of file names accepted by Chain:

"B:CUSTOMER.COM" "A" "OTHELLO.COM"

NOTE - [f the specified file can't be found, Chain returns to the calling
program without taking any actions. This is convenient to use with code
like:

LOOP
Chain(nextProgram);
WritelLn;
erteStrmg(Please Load Program Diskette Into Drive A:');
WriteString('And Hit Any Key To Continue: ');
ResetDiskSystem;

END;

2. The Interface

DEFINITION MODULE Chaining;

EXPORT QUALIFIED
Chain;

PROCEDURE Chain{fileName: ARRAY OF CHAR):

END Chaining.

Implementation Guide
The Utility Library / CmdLin
Page 62

Section 4. CmdLin

1. General Description

The CmdLin module provides a procedure that reads the CP/M command line into a
string.

If the commmand line isn't empty, it is checked for correctness. If a space is entered
before the program's name, CP/M puts the program name into the command line, too.
The default file control blocks, however, are set up correctly. Using this fact,
CmdLin finds the correct beginning of the command line. Simply, if you enter (your
input underlined)

A> copy alpha beta <CR»>

or

A>copy alpha beta <CR»>,

CmdLin will return ' alpha beta' as command line.

If the CP/M command line (stored at 80H .. OFFH) is empty, the ReadCommandLine
procedure displays a star prompt and awaits the user's input.

ReadCommandLine can be called multiple times. It returns the CP/M command line
but on the first call, if the command line isn't empty at that time. Afterwards, the
star prompt is displayed and user input awaited. This input is read with the aid of
Terminal.ReadLn, so all the editing features possible there are also present in
CmdLin, including program abortion by ~C.

The command line returned by ReadCommandLine is guaranteed to be non-empty.

Implementation Guide
The Utility Library / CmdLin
Page 63

2. The Interface

DEFINITION MODULE CmdLin;

EXPORT QUALIFIED ReadCommandLine;

PROCEDURE ReadCommandLine(VAR commandLine: ARRAY OF CHAR);

END CmdLin.

Implementation Guide
The Utility Library / Controls
Page 1G-64

Section 5. Controls

1. General Description

This module provides most of the keyboard enterable ASCII control characters.
Characters like CtrlBackslash aren't included; if they are used, they are most often
entered by special keys, so you will most certainly use the ASCII names for those
characters.

For the official ASCII control character names, please refer to the module ASCIIL.

2. The Interface

DEFINITION MODULE Controls;

EXPORT QUALIFIED
CtrlAt,CtriA, CtriB, CtrIC, CtrlD, CtrlE, CtrlIF, CtrlG,
CtriH, Ctrll, CtriJ, CtriK, CtriL, CtriM, CtrIN, Ctrl0O,
CtriP, CtriQ, CtriR, CtrlS, CtriIT, Ctrlu, Ctrlv, CtrIW,
CtriX, CtrlY, Ctrlz;

CONST

CtriAt= 00C; CtrlA = O1C; CtrIB = 02C; CtrIC = 03C;
CtriID = 04C; CtrlE = 05C; CtrtF = 08C; CtrlIG = 07C;
CtriH = 10C; Ctril = 11C; CtrlJd = 12C; CtrlIK = 13C;
CtriL = 14C; CtrIM = 15C; CtriN = 16C; CtrlO = 17C;
CtrIP = 20C; CtriQ = 21C; CtrIR = 22C; CtrlIS = 23C;
CtriIT = 24C; CtrlU = 25C; CtrlV = 26C; Ctriw = 27C;
CtriIX = 30C; CtrlY = 31C; CtrlZ = 32C;

END Controls.

implementation Guide
The Utility Library / Strings
Page 1G-65

Section 6. Strings

1. General Description

This module provides the some utility procedures to handie character strings
conveniently, and the STRING data type.

String variables are stored in character arrays. You can use any CARDINAL based
index you like, but:

NOTE - Strings procedures assume that an array's low index is 0 and all
indices are calculated for that low index. If you use another low index, do
not forget to account for the actual low index in all indices passed to or
received from a Strings procedure.

If a string variable's contents is shorter than the variable itself, a 0C (ASCIl1.nul)
character determines the end of the valid contents by convention. If length of
variable and contents are the same, this trailing nul character is omitted.

NOTE - If you assign the contents characterwise, do not forget to put the
traiting nul or the results of Strings procedures will be rather surprising!

String constants may be up to 128 characters fong in this implementation. In contrast
to Pascal, string constants of any length up to the size of an array may be assigned
to it. If they are shorter, at least one nul is added, if they are same size, no nul will
be present. If a string constant is longer than the array it should be assigned to, the
compiler issues an error.

NOTE - Open Array Parameters may be accessed element-by-element only. You
may not assign a string constant to an Open Array Parameter. This
restriction is necessary because it cannot be asserted that enough space
will be available until the call of the respective procedure is executed.

Implementation Guide
The Utility Library / Strings
Page 1G-66

An example of the usage of the Strings module:

PROCEDURE FileType(fileName: ARRAY OF CHAR; VAR fileType: ARRAY OF CHAR);
VAR

i,j: INTEGER;
BEGIN

i := Pos('.', fileName);

IF i > HIGH(fileName) THEN

fileType = ' s
ELSE
Delete(fileName, O, i + 1);
fileType := fileName; (* delete also '.' *)
i = 0
LOOP (* get legal characters *)
ch := fileTypelil;
IF (i =3)OR (ch <'""'"YOR (ch ="' OR (ch = "') THEN
EXIT;
END;
INC(i);
END; (* LOOP *)
WHILE i < 3 DO (* pad with blanks *)
fileTypeli] := ' Y
INC(i);
END; (* WHILE *)
fileType[3] := 0C; (* end of string *)
END;
END FileType;

This procedure parses a CP/M file type which consists of 3 characters in its final
form. Here, lacking characters are supplied, additional ones clipped, etc.

impiementation Guide
The Utility Library / Strings
Page 1G-67

2. The Interface

DEFINITION MODULE Strings;

EXPORT QUALIFIED
STRING,
Assign, CompareStr, Concat, Copy,
Delete, Insert, Length, Pos;

CONST

StringLength = 80;

TYPE

STRING = ARRAY [0..StringLength - 1] OF CHAR;

PROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE

PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE

END Strings.

Assign(VAR source, dest: ARRAY OF CHAR);
CompareStr(string1, string2: ARRAY OF CHAR): INTEGER;
Concat(string1, string2: ARRAY OF CHAR;
VAR result: ARRAY OF CHAR):
Copy(string: ARRAY OF CHAR; inx, len: CARDINAL;:
VAR result: ARRAY OF CHAR);
Delete(VAR string: ARRAY OF CHAR; inx, len: CARDINAL);
Insert(subString: ARRAY OF CHAR; VAR string: ARRAY OF CHAR;
inx: CARDINAL);
Length(VAR string: ARRAY OF CHAR): CARDINAL;
Pos(subString, string: ARRAY OF CHAR): CARDINAL;

Implementation Guide
The Utility Library / LongSets
Page 1G-68

Section 7. LongSets

1. General Description

LongSets is provided to use it to build Pascal-like character sets. It is intended as a
simple example for how to build a utility module. Although you cannot define the
resulting sets directly in the program, you can use a LONGSET as a replacement for
such a declaration. A very simple, but effectful enhancement of this module would be
the introduction of a

PROCEDURE InclChars(VAR set: LONGSET; chars: ARRAY OF CHAR);
Try it!

An example:
MODULE LongSetExample;

TYPE
CharSet = LONGSET;

VAR
answer: CharSet;

BEGIN
{nit(answer);
inclRange(answer, ORD('a'), ORD('g"});
REPEAT
Read(ch);
UNTIL Included(answer, ORD(ch));
END LongSetExample;

This module does Pascal-style input checking.

Implementation Guide
The Utility Library / LongSets

Page 1G-69
2. The Interface
DEFINITION MODULE LongSets;
EXPORT QUALIFIED
LLONGSET,
Init, Unite, Diff, InterSect, Xor,
Include, InciRange, Exclude, Included;
CONST
LongBits = 256; (* # of bits in long sets *)
BitsPerSet = 16; (* bits in a BITSET *)
TYPE
LONGSET = ARRAY [0 .. (LongBits-1) DIV BitsPerSet] OF BITSET;
PROCEDURE Init (VAR set: LONGSET);
PROCEDURE Unite (s1, s2: LONGSET; VAR union: LONGSET);
PROCEDURE Diff {s1, s2: LONGSET; VAR difference: LONGSET);
PROCEDURE InterSect (s1, s2: LONGSET; VAR intersect: LONGSET);
PROCEDURE Xor (s1, s82: LONGSET; VAR symSetDiff: LONGSET);

PROCEDURE Include (VAR set: LONGSET; bit: CARDINAL);
PROCEDURE InclRange (VAR set: LONGSET; start, end: CARDINAL);
PROCEDURE Exclude (VAR set: LONGSET; bit: CARDINAL);
PROCEDURE ExclRange(VAR set: LONGSET; start, end: CARDINAL);
PROCEDURE Included (set: LONGSET; bit: CARDINAL): BOOLEAN;

END LongSets.

Implementation Guide
The Utility Library / Conversions
Page 1G-70

Section 8. Conversions

1. General Description

Conversions provides several standard conversions between INTEGERs, CARDINALS
and character strings. Additionally, two general conversion routines are provided that
allow for arbitrary conversion bases between 2 and 63 using characters (upper- and
lower case) as digits, if necessary.

All of the number writing procedures contained in InOut are based upon these
routines.

All of these routines are implemented as BOOLEAN function procedures. In
conversions to string representation, only an impossible base can cause a FALSE
return value. The opposite direction conversions return FALSE if wrong digits were
used, or if an overflow occured.

Implementation Guide
The Utility Library / Conversions
Page 1G-71

An example:

| suppose that you are as curious to see some numbers represented using
base 51 as | am. So, let's have a look:

MODULE Base51;

FROM Terminal IMPORT ReadString, WriteString, WriteLn, Write;
FROM Conversions IMPORT NumToStr, StrToCard;

CONST Base = 51;

VAR
asciiRepresentation: ARRAY [0..7] OF CHAR;
dualRepresentation: CARDINAL;

BEGIN

WriteString('Conversion of decimal numbers to base 51'); WriteLn;

WritelLn;

WriteString('Enter your number: ');

ReadString(asciiRepresentation);

IF StrToCard(asciiRepresentation, duaiRepresentation) &
NumToStr(dualRepresentation,Base,asciiRepresentation) THEN
WriteString(' = ');

WriteString(asciiRepresentation);
WritelLn;
END:;
END Base51.

Perhaps there are even more useful applications of the general conversion routines.
They were introduced mainly because they shorten the code of Conversions quite a
bit.

Implementation Guide
The Utility Library / Conversions
Page 1G-72

2. The Interface

DEFINITION MODULE Conversions;

FROM SYSTEM IMPORT
WORD;

EXPORT QUALIFIED
ConvertToNumber, ConvertToString,
IntToStr, StrTolnt, CardToStr, StrToCard, HexToStr, StrToHex;

(* NOTE -- string arguments cannot have any leading or trailing blanks; *)
(* result is TRUE upon successful conversion. *)
PROCEDURE NumToStr((* convert *) num : CARDINAL;
(* using *) base : CARDINAL;
(* into *) VAR str : ARRAY OF CHAR): BOOLEAN;
PROCEDURE StrToNum((* convert *) str 1 ARRAY OF CHAR;
(* using *) base : CARDINAL;
(* into *) VAR num : CARDINAL): BOOLEAN;

PROCEDURE IntToStr(int: INTEGER; VAR str: ARRAY OF CHAR): BOOLEAN;
PROCEDURE StrTolnt(str: ARRAY OF CHAR; VAR int: INTEGER): BOOLEAN;

PROCEDURE CardToStr(card: CARDINAL; VAR str: ARRAY OF CHAR): BOOLEAN;
PROCEDURE StrToCard(str: ARRAY OF CHAR; VAR card: CARDINAL): BOOLEAN;

PROCEDURE HexToStr(hex: WORD; VAR str: ARRAY OF CHAR): BOOLEAN;
PROCEDURE StrToHex(str: ARRAY OF CHAR; VAR hex: WORD): BOOLEAN;

END Conversions.

Implementation Guide
The Utility Library / ConvertReal
Page 1G-73

Section 9. ConvertReal

1. General Description

ConvertReal includes procedures that do conversions between strings and REAL data.
This module is part of a standard library proposed by MODUS.

A real number consists of two major parts: The mantissa and the exponent. Both
can have a sign. The mantissa may be any floating point number, i.e. 1.8, -1567.04,
0.000002, etc. The exponent may be an integer number in the range -39 up to and
including 38. Note that numbers that are too small to be different from zero, are
automatically set to zero. No error is indicated in this case. On the other hand, if
the upper limit of 2127 = 1,7..% 1038 is reached or surpassed in a calculation, a fatal
runtime error Occurs.

2. StrToReal

The input procedure StrToReal converts an ASCI!I| string into the internal REAL
format. A legal REAL number has to comply to the syntax:

AcceptedReal = Sign Mantissa [('E' | '‘e') Sign Number].
Sign = [+ | .

Mantissa = Number ['.' Number] | '.' Number.
Number = Digit {Digit} .

Digit =] .1]"'"

The maximum range of the REAL number format is +/- (5e-39..1.7014118e38). The
exponent -the number after 'E' or 'e'- is to the decimal base. Thus, the REAL
number is composed as mantissa * 10€xponent

NOTE - Differing from the compiler's real number syntax which allows it to
determine the type of a constant, the dot may be omitted in input to this
procedure.

Implementation Guide
The Utility Library / ConvertReal
Page 1G-74

Errors during a conversion are indicated by setting the BOOLEAN variable parameter
success to FALSE. Errors may occur because of numbers too big to be represented, or
if illegal characters are in the string holding the number.

3. RealToStr

This procedure converts a REAL real to the string str producing width digits or
blanks. The decPlaces parameter serves different purposes: If decPlaces is greater
than zero, the REAL is converted to a fixed-point representation having decPlaces
decimal places (for example '1.50' for decPlaces = 2). If decPlaces is zero, an integer
representation of the number without a '.' (100000) is produced. If it is negative, the
scientific notation (1.8E+10, etc.) is created. In any case, the string contains leading
blanks if the number is not exactly width characters long. If the scientific format has
been chosen, at least 1 and at most 8 significant digits are output for the mantissa.
The value of width determines the actual number of digits according to the formula

digits = width - ExponentChars (4) - Dot (1) - sign (0 or 1).

success is set to FALSE if the conversion couldn't be accomplished due to too small a
field width. If width is greater than the size of the string, an error gets flagged, too.

The minimum field widths are:

Integer: 1
Decimal: 2 + decPlaces ("0." + decPlaces)
Scientific: 6 ("0.E+00")

For each representation, negative numbers require one more character.

NOTE - Due to the REAL number format, only about 7 digits are significant in
a number.

Implementation Guide

The Utility Library / ConvertReal

4. The Interface

DEFINITION MODULE ConvertReal;

EXPORT QUALIFIED
RealToStr, StrToReal;

PROCEDURE RealToStr((* converts *) r

(* using *) width

(* and *) decPlaces

(* into *) VAR s

(* if *) VAR success
PROCEDURE StrToReal((* converts *) s

(* into *) VAR r

(* if *) VAR success

END ConvertReal.

Page 1G-75

: REAL;

: CARDINAL;

: INTEGER;

: ARRAY OF CHAR;
: BOOLEAN);

: ARRAY OF CHAR;
i REAL;
: BOOLEAN);

Implementation Guide
The Utility Library / FileNames
Page 1G-76

Section 10. FileNames

1. General Description

This module provides conversion of file name strings into the CP/M File Control
Block (FCB) format and vice versa. Wildcards ('?' and '*') are possible in both
conversion directions. A separate procedure that returns error message strings is also
supplied.

These procedures are used internally by SeqglO and Files to parse file names. FileSys
uses a primitive AssignName procedure that accepts file names in the form output by
StrToFCB.

2. StrToFCB

StrToFCB scans the file name given in nameStr and returns a FCBFileName, which
has the form required by the CP/M operating system. A default file name is passed to
StrToFCB through the output parameter FCBName. The default fields are substituted
for any missing fields in the scanned string. A typical calling sequence of StrToFCB
looks like:

WriteString("Please Enter the File's Name: ");
ReadLn(s);
name.disk := myDisk; name.name := myName; name.type := myType;
nameState := StrToFCB(s, name);
IF nameState = NameOK THEN
ELSE
NameErrorMessage(nameState);
END;

[f you don't want to specify a default, use the following statement to specify the
defauit:

name.text := '

impiementation Guide
The Utility Library / FileNames
Page 1G-77

The CF/M default drive is set if neither the string nor the default value set any disk.
A blank file type is returned if neither the string nor the defauit do specify a file
type. An error message is issued if neither the string nor the default do specify a file
name.

NOTE - The file name has to be specified in any case, be it by default or by
the filename string.

3. Accepted Names

The StrToFCB procedure allows for unambigous file names (i.e. "LETTER.TXT") as
well as for ambigous ones like "M*.MOD" or "A?ORT.S*", It does not allow for
unambigous characters after a star. In the returned file name, stars are expanded to
the appropriate number of question marks.

NOTE - The file systems do not allow for ambigous file specifications for open,
create and rename operations. Delete, however, allows this kind of
wildcard names, because CP/M's delete operation supports them directly.

4. Return Values

StrToFCB returns a value of type NameState. [f the result is NameOK, then a
correct, unambigous file name has been scanned. StrToFCB returns WildOK, if any
wildcard characters {'?') are contained in the completed file name. Such file names
are useful for CP/M directory searches or delete operations.

DeviceOK is returned if one of the following CP/M device names has been scanned:
CON:, KBD:, TRM:, LST:, RDR:, or PUN:,

A DriveError is returned if either an impossible drive character has been specified
{legal are '@' up to and including ‘P', lowercase is converted to uppercase).

NoNameDefault gets issued if in the final, assembled file name, the name field is filled
completely with spaces.

implementation Guide
The Utility Library / FileNames
Page 1G-78

The lliegalChars result is returned if characters not contained in 'A'..'Z', '0'..'9', "',
L ' and "' are found in the scanned file name.

5. FCBToStr

This procedure returns a string containing the file name found in the given File
Control Block. The boolean parameter formatted decides whether or not the output
string gets formatted. This means, that the file name is fixed to the format
"D:FileName.Typ". If the file name and the type aren't full length, they are padded
with blanks. The drive is omitted if the file resides on the default drive. If formatted
is set to FALSE, the padding isn't done.

NOTE - FCBToStr re-folds question mark sequences to stars, if applicable, i.e.
if they are at the end of a field.

6. The Interface

DEFINITION MODULE FileNames;
FROM OpSys IMPORT FCBFileName;
EXPORT QUALIFIED NameState, StrToFCB, FCBToStr;
TYPE
NameState = (NameOK, WildOK, DeviceOK,

DriveError, NoNameDefauit, lllegalChars);

PROCEDURE StrToF CB(nameStr : ARRAY OF CHAR;
VAR FCBFile : FCBFileName): NameState;

PROCEDURE FCBToStr({ FCBFile : FCBFileName;
VAR nameStr : ARRAY OF CHAR;
formatted : BOOLEAN);

END FileNames.

Implementation Guide
The Utility Library / FileSys
Page IG-79

Section 11. FileSys

1. General Description

The module FileSys provides non-standard, small and simple sequential buffered file
}/0 handling.

The buffer size (i.e. the amount of information juggled around when reading from or
writing to disk files), is fixed and represented by the constant bufferSize. To alter
this size, just change that constant and recompile the implementation module.

There are procedures to execute most sequential file related CP/M commands. Errors
are checked whenever a CP/M operation occurs. The result of each CP/M operation
is stored in result. With its aid, you can check whether an operation was successful
or not.

Additionally, there are checks implemented by the procedure TestAbort; these tests
lead to error messages of the form

---- cannot <action> file "D:FILENAME.TYP"

and immediate program abortion. <action> can be either 'open', 'write to', 'rename',
or 'close'. The drive is only shown if it isn't the default drive.

implementation Guide
The Utility Library / FileSys
Page 1G-80

2. File _Names

The standard FGBFileName type is used to represent file names. To replace a file
name parameter by a string constant giving the file name, you have to obey these
rules:

- The string constant may contain uppercase letters only.

- The format is fixed: one char for the drive, eight characters for the
name and finally three characters for the type.

- No separators between drive and name or name and type are
allowed.

So, the string constant has to consist of 12 characters. Replace the file name
parameter by

FCBFileName('DFILENAMETYP')
This is one of the uses of the 'wild' type conversions allowed by Modula-2.

To convert an arbitrary string to the required format, use the procedures offered by
the FileNames module.

3. Search & Paths

There is a simple scheme to allow search paths during file opening operations. The
search path can be set by calling SetSearchPath with a path consisting of one to six
letters out of '@' .. 'P'. In FileSys' initialization, it is set to the default drive
(indicated by '@').

This search path is used in OpenFile and UsesFile operations, if the file name's drive
set to the default drive. Otherwise, the indicated drive is used.

in CreateFile and MakeFile, the first drive in the path indicates the location where
the file is being created, again, if no explicit drive has been specified.

implementation Guide
The Utility Library / FileSys
Page 1G-81

4. File Variables

Files are allocated on the heap. The heap space of an unused file may be reclaimed
by means of the Disposelile procedure. Only DeleteFile automatically reclaims the
space used by =z file, because this is the only action that makes the file descriptor
non-meaningful by kilting its associated file. in all other actions, the file could be
used for further purposes. Therefore, if you don't need a file any longer, you have to
get rid of its descriptor by caliing DisposeFile.

5 Reading From Files

A typical seguence of commands to read from a file is:

SetSearchPath(path);
UsesFiie(file, fileName);

WHILE NOT EQF(file) DO
ReadByte(file, char);
END;

DisposeFile(file);
The UsesFile procedure is equivalent to an AssignName, OpenFile sequence, except for
the fact that UsesFile aborts (HALTs) the program if the fite cannot be found. By

using the AssignName, OpenFile sequence, you can check the operation's success by
looking at the resuit value.

The path indicates up to six drives on which the file to open is searched for.

implementation Guide
The Utility Library / FileSys
Page 1G-82

6. Writing to Files

A typical sequence of commands to write to a file is:

SetSearchPath(path);
MakeFile(file, fileName);

REPEAT
WriteByte(file, char);
UNTIL dataExhausted:

CloseFile(file):
DisposeFile(file);

Here, the first drive in path indicates where the new file is created. If a file with

the same name exists on the indicated drive, it is deleted first.

CloseFile records the file permanently. DisposeFile returns the space used by the
file's descriptor to the storage management.

7. Renaming Files

To rename a file you work(ed) with, use the following command:
RenameFile(file, newName):
If you want to rename a file without working with it, use the Rename procedure:

Rename(oldName, newName);

Rename uses a local file for its operation. This file is deleted upon completion of the
action. It is a good idea to assure a file's existence before renaming it because these
procedures abort your program if the file cannot be renamed (i.e. not found).

impiementation Guide
The Utility Library / FileSys
Page 1G-83

8. Deleting Files

Like renaming operations, deletion can be done by name or by using a file variable.

The DeletefFile as well as the Delete procedure dispose automaticaily of the file
descriptor in any case. No test on success of the operation is done. You can check
this by testing result.

Call the procedures as follows:
DeleteFile(file);
or

Delete{name);

9. A Sample File Copy Program

A simple file copy program might look like:

MODULE CopyFiles;

FROM FileSys IMPORT
File, PathType,
result,
SetSearchPath, MakeFile, UsesFile, ReadByte, WriteByte,
CloseFile, DisposeFile;

FROM FileNames [IMPORT NameState, StrToFCB;
FROM OpSys IMPORT FCBFileName;
FROM Terminal IMPORTY ReadString, Write, WriteLn, WriteString;

VAR
input, output: File;
ch: CHAR;
name: ARRAY [0..13] OF CHAR; (% "A:FILENAME.TYP" *)
fname: FCBFileName;

PROCEDURE AskFor{prompt: ARRAY OF CHAR);

implementation Guide
The Utility Library / FileSys
Page 1G-84

VAR
it INTEGER;
BEGIN
LOOP
WritelLn;
WriteString(prompt); ReadString(name);
fname := ''; (* no default *)
state := StrToFCB(name, fname);
IF state = NameOK THEN
EXIT;
ELSE
WriteLn; WriteString('---- ');
CASE state OF
WildOK: WriteString('No Wildcards (?,*) Allowed');
DeviceOK: WriteString('No Devices Possible');
DriveError: WriteString('Drive has to be in @, A..P');
NoNameDefault: WriteString('Please Specify a File Name');
IllegalChars: WritString('lllegal Chars in Name');
END;
END;
END;
END AskFor;

BEGIN
WriteString('CopyFiles -- simple file copy program'); WriteLn;
WriteLn;
WriteString('Enter file names as [drive:] filename.typ'); WriteLn;
AskFor('source file name: DE
UsesFile(input, fname);
AskFor('destination file name: ');
MakeFile{output, fname);

LOOP (* ok, copy. *)
ReadByte(input, ch); IF result # 0 THEN EXIT; END;
WriteByte(output, ch); IF result # 0 THEN EXIT; END;
END; (* LOOP *)

CloseFile(output);

DisposeFile(input);

WriteString('done');
END Copy.

File name expansion and tests for the existence of the input file can be built into the
AskFor procedure by using the procedures of the FileNames module and OpenFile.

FROM OpSys

Implementation Guide
The Utility Library / FileSys
Page 1G-85

10. The Interface

DEFINITION MODULE FileSys;

IMPORT FCBFileName;

EXPORT QUALIFIED
File, PathType,

result,

MakeFile, UsesFile, SetSearchPath, AssignName,
CreateFile, OpenFile,

ReadByte, EOF, WriteByte,

CloseFile, DisposeFile, Drive,

Delete, DeleteFile, Rename, RenameFile;

CONST

searchPathLength =

TYPE
Fite;

PathType =

VAR

result: CARDINAL;

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

END FileSys.

6; (* max. 6 drives to search *)

ARRAY [0O..searchPathlLength-1] OF CHAR;

(* CP/M return value. *)

SetSearchPath(newSearchPath: PathType);
AssignName(VAR f: File; fname: FCBFileName);
CreateFile(f: File);

OpenFile(f: File);

CloseFile(f: File);

Delete(delfil: FCBFileName);

DeleteFile(VAR f: File);

Rename(old, new: FCBFileName);
RenameFile(oldFile: File; newName: FCBFileName);
ReadByte(f: File; VAR ch: CHAR);

EOF(f: File): BOOLEAN;

WriteByte(f: File; b: CHAR);

MakeFile(VAR f: File; n: FCBFileName);
UsesFile(VAR f: File; n: FCBFileName);
DisposeFile(VAR f: File);

Implementation Guide
The Utility Library / Files
Page 1G-86

Section 12. Files

i. General Description

This is the third File System included with this Modula-2 System. It is capable of file
positioning at the byte and record-level and therefore provides some previously
unavailable features,

This file system uses internal buffers of 1kByte in the current implementation. As
with most other modules, you can change this size to customize the system to your
needs.

Its advantage over most other random [/0 implementations lies in the fact that it is
able to position a file at the byte level, ignoring CP/M's 128 byte sectors. The price
for this flexibility is an increased complexity and increased size, but it is very simple
to operate by the user.

It is also remarkable to say that you can read and write to a file without closing and
re-opening it. In fact, you can sequentially read a character, write the next, read
the third, etc.

NOTE - Upon each read action, a file's internal buffer gets flushed to disk, if it
has been written to since the last read operation.

2. Error Handling

Like in SeqlO, there are two ways of error checking possible: Explicit error checking
by looking at FileStatus, and implicit checking by installing a FileHandler procedure.

WARNING - As in SeqlO, handlers shouldn't try to operate on the erroneous file
except for closing it or writing a message. Otherwise, subsequent errors
may re-invoke the handler.

implementation Guide
The Utility Library / Files
Page 1G-87

3. File Names

File names are compatible with the FileNames Module, i.e. they are internally
checked by the StrToFCB procedure.

4., File Variables

The FILE type is hidden from the user. To make a file acessible, you have either to
open or to create it using the Open and Create procedures. To end a file's
processing, you have to Close it. If you want that the file also gets deleted from the
disk, use the Release procedure instead. This is especially useful for locally used
files.

A normal CP/M 2.2 file may contain up to 65536 records (216). This results in 8
MBytes maximum file size. Files is laid out to allow for this maximum number of
records. For large CP/M 3.0 files (up to 32 MBytes, and 218 records (262'144)), Files
does not work correctly. The record calculation procedure used by it, however,
calculates 24 bit quantities.

5. File Position Variables

FilePos variables contain all the information necessary to position a file to a given
point. A position can either be calculated using CalcPos or it can be retrieved by
calling GetPos or GetEOF.

The only way to position a file is given by the SetPos procedure.

NOTE - Users of Volition System's implementation may notice the absence of
the SetEOF procedure: Only CP/M 3.x does allow for file truncation. Since
CP/M Plus isn't very widespread yet, such a procedure has not been
included in the normal form of this module.

implementation Guide
The Utility Library / Files
Page 1G-88

6. Reading From Files

Although Files supports random access, a file is usually accessed sequentially. So, a
read session may look as follows:

VAR
f : FILE;
fileName : ARRAY [0..13] OF CHAR;
msg : ARRAY [0..79] OF CHAR;
inputState: FileState;
ch : CHAR;

BEGIN

inputState := Open(f, fileName);
IF inputState = FileOK THEN

WHILE NOT EOF(f) DO
Read(f, ch);
END;

inputState := Close(f);

IF inputState # FileOK THEN
StatusMsg(inputState);
HALT;

END;

ELSE
StatusMsg(inputState);
END;

NOTE - Even when a file is only read from, a call to Close is mandatory if you
want to reclaim the heap space used by the file descriptor.

Multibyte-records or arrays may be read using the ReadRec or ReadBytes
procedures. You pass the variable itself or its address and its size, res-
pectively. ReadRec returns an EndError if there wasn't enough data
between the start position and the end of file. ReadBytes returns the
number of bytes that where actually read from the file.

implementation Guide
The Utility Library / Files
Page 1G-89

7. Writing to Files

A typical write command sequence skeleton for sequential access is:
outputState := Create(f, fileName);
IF outputState = FileOK THEN

REPEAT
Write(f, ch);
UNTIL allWritten;

outputState := Close(f);

IF outputState # FileOK THEN
StatusMsg(outputState);
END;

ELSE
StatusMsg(outputState);
END;

Multibyte-records or arrays may be written using the WriteRec or WriteBytes
procedure. You pass the address of your structure, and its size. WriteRec returns a
StatusError if it couldn't write the full record to disk, WriteBytes returns the number
of bytes that where actually written to the file.

8. Positioning Files

Fites introduces variables of type FilePos. Their structure is unimportant to the user.

NOTE - FilePos typed variables have to be initialized before they are used by
invoking InitPos, and if they are declared local to a procedure, you have
to dispose of them by FiniPos to reclaim the dynamic variable storage
(heap) they use. This is in contrast to other nearly equivalent
implementations (Volition Systems).

It is assumed that a file contains a given number of fixed size records. To access a
given record, you can calculate its position by using CalcPos. CalcPos uses the
record number and the record size which you provide, and calculates thereof the
CP/M logical record number and the offset of the start of your logical record, in this

Implementation Guide
The Utility Library / Files
Page 1G-90

record. Having calculated this position, you set the file read start to it by using
SetPos. So, the scheme looks like:

CalcPos(recordNumber, SIZE(record), pos):
SetPos(f, pos);

An often used file organization is to have a file header and behind it records of some
given structure. To support this scheme, the AddPos procedure has been implemented.
So, you can add the offset of the header to each calculated position. The modified
scheme of address calculation is:

CalcPos(1, headerSize, firstRec);

CalcPos(recordNumber, StZE(record), pos);
AddPos(pos, firstRec, pos):
SetPos(f, pos);

If you want to append data to the end of a file, use the GetEOF procedure to find
the end position of the file.

NOTE - GetEOF cannot account for your logical records. If your file doesn't
end at a CP/M sector end, you have to know where the exact end of file
is, either by a mark or by recalculating a record position.

NOTE - Setting the position of a file causes no immediate disk access. This
access is delayed until the next read or write operation occurs. This
means that positioning a file multiple times between read or write
operations doesn't make your computer "fiddle around" on the disks.

9. Renaming Files

The renaming operation works straight forward. You give the old and the new file
name as strings, and the rename operation is carried out. Success of operation can be
determined by watching Rename's return value.

IF Rename('XX.OLD', '"YY.NEW') # FileOK THEN
WriteString('Error in Renaming XX.OLD');
END;

impiementation Guide
The Utility Library / Files
Page [1G-91

10. Deleting Files

You can delete files by using unambigous or ambigous file names. As renaming,
deletion is done by name, directly.

IF Delete('*,BAS') = FileOK THEN
WriteString('BASIC files emptied');
END;

11. The Interface

DEFINITION MODULE Files;
FROM SYSTEM IMPORT ADDRESS:

EXPORT QUALIFIED
FILE, EOF, FileState, FileStatus, FileHandler,
DummyHandler, SetFiteHandler,
Open, Create, Close, Release,
Rename, Delete,
FilePos, SetPos, GetPos, GetEOF, CaicPos,
Read, Write, ReadBytes, WriteBytes;

TYPE
FILE;

FilePos:

FileState = (FileOK, UseError, StatusError,
DeviceError, EndError);
FileHandler = PROCEDURE(VAR FILE);

PROCEDURE EOF(f: FILE): BOOLEAN:

PROCEDURE FileStatus(f: FILE): FileState;

PROCEDURE DummyHandler(VAR f: FILE);

PROCEDURE SetFileHandler(f: FILE: handler: FileHandler);

PROCEDURE Open(VAR f: FILE; name: ARRAY OF CHAR): FileState;
PROCEDURE Create(VAR f: FILE; name: ARRAY OF CHAR): FileState:

impiementation Guide
The Utility Library / Files
Page 1G-92

PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE

PROCEDURE

PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE

END Files.

Close(VAR f: FILE): FileState;
Release(VAR f: FILE): FileState;

Delete(name: ARRAY OF CHAR): FileState;
Rename(currentName, newName: ARRAY OF CHAR): FileState;

lnitPos(VA:R pos: FilePos);
FiniPos(VAR pos: FilePos);

GetPos(f: FILE; VAR pos: FilePos);
GetEOF(f: FILE; VAR pos: FilePos);

SetPos(f: FILE; pos: FilePos);

CalcPos(recNum, recSize: CARDINAL; VAR pos: FilePos);
AddPos(position, offset: FilePos; VAR pos: FilePos);

Read(VAR f: FILE; VAR ch: CHAR);
ReadRec(VAR f: FILE; VAR rec: ARRAY OF WORD);
ReadBytes(VAR fiFILE; buf: ADDRESS; nBytes: CARDINAL): CARDINAL;

write(VAR f: FILE; ch: CHAR);
WriteRec(VAR f: FILE; rec: ARRAY OF WORD);
WriteBytes(VAR f:FILE; buf: ADDRESS; nBytes: CARDINAL): CARDINAL;

Implementation Guide
The Utility Library / Moves
Page 1G-93

Section 13. Moves

1. General Description

Moves contains procedures that do fast memory transfers or initializations. It is
useful for long initializations, or for fast transfers of large areas.

To use these procedures, you have to import ADR and eventually also SIZE or TSIZE
from SYSTEM.

Some examples:

Fill(ADR(buffer), SI1ZE(buffer), OC); (* initialize buffer to 0 *)

Movel eft(ADR(string[1]), ADR(string[0]), SIZE(string) - 1);

MoveRight{ADR(string{0]), ADR(string{1]), StZE(string) - 1);

implementation Guide
The Utility Library / Moves
Page 1G-94

2. How to Use Moveleft and MoveRight

WARNING - There are some conditions to watch for when moving overlapping
areas, as string in the above examples. If the source starts before the
destination, use MoveRight, if it starts after the destination, use Move-
Left. Otherwise, you just fill your area with the contents of the memory
cells that lie between source and destination start or end. In fact, this is
the trick that is used to speed up Fill.

The above move examples look as follows1:

before action after
"H i There." Movel ef t " There., ."
| source start source: s[1]
destination start dest: s[0]
length: 8
"H o There.™" Moveleft "HHHHHHHHH"
| destination start source: s[0]
source start dest: s[1]
length: 8
"Mi There." MoveRight M e e e e e e e !
| source start source: s[1]
destination start dest: s[0]
length: 8
"H i There." MoveRight "HH i Therebt
| destination start source: s[0]
source start dest: s[1]
length: 8

! For better legibility of the markers, the string contents are double spaced.

Implementation Guide
The Utility Library / Moves
Page 1G-95

NOTE - This module is machine dependent: restrict its use as far as possible.

3. The Interface

DEFINITION MODULE Moves;
FROM SYSTEM IMPORT ADDRESS;

EXPORT QUALIFIED
Movel eft, MoveRight, Fill;

PROCEDURE Movel eft(source, dest: ADDRESS; length: CARDINAL);
PROCEDURE MoveRight(source, dest: ADDRESS; length: CARDINAL);
PROCEDURE Fitl(start: ADDRESS; length: CARDINAL; ch: CHAR);

END Moves.

Implementation Guide
The Utility Library / OpSys
Page |G-96

Section 14. OpSys

1. General Description

The OpSys module provides the interface to the operating system, i.e. CP/M. it
includes procedures for standard BDOS - as well as BIOS calls. For convenience,
enumeration types giving mnemonic names to the BDOS respectively BIOS function
numbers are included; these can be used if you like it that way, but you are free to
use any numbers as arguments in the procedures because they have WORD parameters
all over.

Furthermore, the CP/M data structures FCB (File Control Block), FCBFileName (part
of the FCB) and the string input buffer CPMStringBuffer as well as the B{OS-related
DPH (disk parameter header), DPB (disk parameter block), DirEntry and DirBuffer
are exported by this module. The last two items are used by the search first/search
next functions of CP/M.

WARNING - This module provides you full control over the operating system.
Though, you can cope around with your system at the lowest levels. You
can use its power to your advantage, but it is possible to create a
medium to king size disaster. So be careful, especially when using disk
oriented functions of either the BDOS or the BIOS.

For more information about BDOS- and BIOS-calls, please read The CP/M Interface
Guide or The CP/M Alteration Guide from Digital Research, respectively. |If you
use another operating system than CP/M 2.2, consult the equivalents to the above
manuals for your system.

impliementation Guide
The Utility Library / OpSys

Page 1G-97
2. The interface
DEFINITION MODULE (QOpSys:
FROM SYSTEM IMPORT
ADDRESS, WORD:
EXPORT QUALIFIED

FCBFileName,

FCB, RndFCHB,

CPMStringBuffer,

BdosFunctions,

Bdos, BdosHL.,

DirEntry, DirBuf, DirBufPtr,

DPB, DPBptr, DPH, DPHptr,

BiosFunctions,

Bios, BiosHL;
(* WARNIMNG - this module is a potential danger to your system if you *)
(* don't now exactly what you're doing. So, if you don't have any *)
(* experience, *)
(* *)
(* KEEP YOUR FINGERS OFF Pt *)
(*)
(* Thank You. *)

TYPE
FCBFileName = RECORD
CASE BOOLEAN OF
TRUE: disk : CHAR:
name : ARRAY [0..7] OF CHAR:
type : ARRAY [0..2] OF CHAR:
| FALSE:text : ARRAY [0..11] OF CHAR;
END;
END;

FCB = RECORD
name: FCBFileName;
CASE BOOLEAN OF
TRUE: rest : ARRAY [0..20] OF CHAR;

FALSE: ex, (* extent)
51,82, (* system data *)
rc @ CHAR: {(* record count *)
d : ARRAY [0..15] OF CHAR;
cr 1 CHAR; (* current record #}

END;

Implementation Guide
The Utility Library / OpSys
Page 1G-98

END; (¥ FCB *)

RndFCB = RECORD
name: FCBFileName;
CASE BOOLEAN OF
TRUE: rest : ARRAY [0..23] OF CHAR;

FALSE: ex, (* extent *)
s1,s2, (* system data *)
rc : CHAR; (* record count *)
d : ARRAY [0..15] OF CHAR;
cr : CHAR; (* current record *)
rec : CARDINAL: (* rnd rec # *)
r2 : CHAR; (* rngd rec, hi part, ev. ovfl *)
END:

END; (* RndFCB *)

CPMStringBuffer = RECORD
maxLen : CHAR;
curLen : CHAR;
text : ARRAY[0..255] OF CHAR;
END:

TYPE
BdosFunctions = (boot, crtln, crtOut, rdrin, punOut,

IstOut, dirlO, get!OB, setlOB, prtStr,
rdCBuf, crtSt, verNo, reset, selbDsk,
openF, closeF, searchFst, searchNxt, deieteF,
readSeq, writeSeq, makeF, renameF, getlogin,
retCDsk, setDMA, getAlloc, writeProt, getRO,
setFA, getDPB, user, readRan, writeRan,
compFSize, setRec, resDrv, dummy1, dummy2,
writeRanZF);

PROCEDURE Bdos(func, parm: WORD; VAR return: WORD):
PROCEDURE BdosHL (func, parm: WORD; VAR return: WORD};

implementation Guide
The Utility Library / OpSys
Page 1G-99

TYPE
DirEntry = RECORD
name : FCBFileName;
ex,
s1,s2,
rc : CHAR;
d : ARRAY [0..15] OF CHAR;
END;

DirBufPtr = POINTER TO DirBuf;
DirBuf = ARRAY [0..3] OF DirEntry;

DPBptr = POINTER TO DPB;
DPB = RECORD

spt : CARDINAL;

bsh,

blm,

exm : CHAR;

dsm : CARDINAL;

drm : CARDINAL;

alo,

all : CHAR;

cks,

off : CARDINAL;
END;

DPHptr = POINTER TO DPH;
DPH = RECORD

xIt : ADDRESS;

s0,s1,s2 : CARDINAL;

dirbuf : DirBufPtr;

dpb : DPBptr;

csv : ADDRESS;

alv : ADDRESS;
END;

BiosFunctions = (wBoot, conSt, conin, conOut, list, punch,
reader, home, dskSel, trkSet, secSet, DmaSet,
read, write, listSt, tranSec);

PROCEDURE Bios(routine, parm: WORD; VAR return: WORD);
PROCEDURE BiosHL (routine, parmBC, parmDE: WORD; VAR return: WORD);

END OpSys.

